Analytic complete equivalence relations and their degree spectra

Dino Rossegger
May 30, 2020

Department of Pure Mathematics, University of Waterloo
There are several notions of computational complexity for a structure. One of the most important ones are spectra.

1. Given \mathcal{A}, the **atomic diagram** $D(\mathcal{A})$ is the set of basic formulas true of \mathcal{A}. Then the **isomorphism spectrum** of \mathcal{A} is

$$DgSp_{\cong}(\mathcal{A}) = \{deg(D(\mathcal{B})) : \mathcal{B} \cong \mathcal{A}\}.$$

2. Let \mathcal{A} be computable (i.e., $D(\mathcal{A})$ is computable), then the **categoricity spectrum** of \mathcal{A} is

$$CatSp_{\cong}(\mathcal{A}) = \{deg(f) : f : \mathcal{A} \cong \mathcal{B}, \mathcal{B} \text{ computable}\}.$$

These notions have received much attention over last decades.

Typical question: What families of degrees are realized as spectra?
Definition (Fokina, Semukhin, Turetsky; Montalbán; Yu)
Let E be an invariant equivalence relation on a class of structures \mathcal{C}. The E-degree spectrum of $\mathcal{A} \in \mathcal{C}$ is

$$DgSp_E(\mathcal{A}) = \{\text{deg}(D(B)) : B \in \mathcal{E}\}.$$

Definition
Let E be an invariant equivalence relation on a class of structures \mathcal{C}. The E-categoricity spectrum of a computable structure \mathcal{A} is

$$CatSp_E(\mathcal{A}) = \{\text{deg}(f) : f \text{ witnesses } \mathcal{A} \in \mathcal{E}, \mathcal{B} \text{ computable}\}$$

“witnesses” is intentionally ubiquitous, depends on E
Examples of equivalence relations

- Elementary equivalence $\mathcal{A} \equiv \mathcal{B}$ (Andrews, J.Miller; Andrews, Knight; ACDLM)

Question:

Let X be a \equiv, \approx, $\not\approx$-spectrum, is $X' = \{d' : d \in X\}$? (positive for \sim)

Question:

Let $a \mid b$, is $\{d \geq a\} \cup \{d \geq b\}$ an \equiv spectrum? (positive for \equiv, $\equiv_{\geq 2}$, negative for $\sim =$, $\not\equiv$)
Examples of equivalence relations

- Elementary equivalence $\mathcal{A} \equiv \mathcal{B}$ (Andrews, J.Miller; Andrews, Knight; ACDLM)
- Σ_n equivalence \equiv_n (structures satisfying the same f.o. Σ_n sentences) (Fokina, Semukhin, Turetsky),
Examples of equivalence relations

- Elementary equivalence $\mathcal{A} \equiv \mathcal{B}$ (Andrews, J.Miller; Andrews, Knight; ACDLM)
- Σ_n equivalence \equiv_n (structures satisfying the same f.o. Σ_n sentences) (Fokina, Semukhin, Turetsky),
- \mathcal{A} embeds into \mathcal{B}, $\mathcal{A} \hookrightarrow \mathcal{B}$, if \mathcal{A} is isomorphic to a substructure of \mathcal{B}
 \mathcal{A} is bi-embeddable with \mathcal{B}, $\mathcal{A} \approx \mathcal{B}$, if $\mathcal{A} \hookrightarrow \mathcal{B}$ and $\mathcal{B} \hookrightarrow \mathcal{A}$ (Fokina, R., San Mauro (\approx-spectra)) (Bazhenov, FRSM (\approx-categoricity spectra)),

Question:
- Let X be a \equiv, \approx, \approx_n-spectrum, is $X' = \{d' : d \in X\}$? (positive for $\sim = \approx_n$)
Examples of equivalence relations

- Elementary equivalence $\mathcal{A} \equiv \mathcal{B}$ (Andrews, J.Miller; Andrews, Knight; ACDLM)
- Σ_n equivalence \equiv_n (structures satisfying the same f.o. Σ_n sentences) (Fokina, Semukhin, Turetsky),
- \mathcal{A} embeds into $\mathcal{B}, \mathcal{A} \hookrightarrow \mathcal{B}$, if \mathcal{A} is isomorphic to a substructure of \mathcal{B}
 \mathcal{A} is bi-embeddable with $\mathcal{B}, \mathcal{A} \approx \mathcal{B}$, if $\mathcal{A} \hookrightarrow \mathcal{B}$ and $\mathcal{B} \hookrightarrow \mathcal{A}$ (Fokina, R., San Mauro (\approx-spectra)) (Bazhenov, FRSM (\approx-categoricity spectra)),
- \mathcal{A} elementary embeds into $\mathcal{B}, \mathcal{A} \preceq \mathcal{B}$, if \mathcal{A} is isomorphic to a elementary substructure of \mathcal{B},
 and \mathcal{A} is elementary bi-embeddable with $\mathcal{B}, \mathcal{A} \approx \mathcal{B}$ if $\mathcal{A} \preceq \mathcal{B}$ and $\mathcal{B} \preceq \mathcal{A}$ (R. (\approx-spectra)).
Examples of equivalence relations

- Elementary equivalence $\mathcal{A} \equiv \mathcal{B}$ (Andrews, J.Miller; Andrews, Knight; ACDLM)

- Σ_n equivalence \equiv_n (structures satisfying the same f.o. Σ_n sentences) (Fokina, Semukhin, Turetsky),

- \mathcal{A} embeds into $\mathcal{B}, \mathcal{A} \hookrightarrow \mathcal{B}$, if \mathcal{A} is isomorphic to a substructure of \mathcal{B}

- \mathcal{A} is bi-embeddable with $\mathcal{B}, \mathcal{A} \approx \mathcal{B}$, if $\mathcal{A} \hookrightarrow \mathcal{B}$ and $\mathcal{B} \hookrightarrow \mathcal{A}$ (Fokina, R., San Mauro (\approx-spectra)) (Bazhenov, FRSM (\approx-categoricity spectra)),

- \mathcal{A} elementary embeds into $\mathcal{B}, \mathcal{A} \preceq \mathcal{B}$, if \mathcal{A} is isomorphic to a elementary substructure of \mathcal{B},

and \mathcal{A} is elementary bi-embeddable with $\mathcal{B}, \mathcal{A} \approx \mathcal{B}$ if $\mathcal{A} \preceq \mathcal{B}$ and $\mathcal{B} \preceq \mathcal{A}$ (R. (\approx-spectra)).

Question: Let X be a \equiv, \approx, \approx-spectrum, is $X' = \{d' : d \in X\}$? (positive for \equiv)

Question: Let $a | b$, is $\{d \geq a\} \cup \{d \geq b\}$ a \approx spectrum? (positive for \equiv, $\equiv_{n \geq 2}$, negative for \approx, \approx)
Relationship between degree spectra

<table>
<thead>
<tr>
<th></th>
<th>⊆</th>
<th>≃</th>
<th>≈</th>
<th>≊</th>
<th>≡</th>
<th>≡ n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FRS)</td>
<td>✓</td>
<td>?</td>
<td>?</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(R)</td>
<td>?</td>
<td>✓</td>
<td>?</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(AM; AK)</td>
<td>?</td>
<td>?</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(FST) for fixed n>1</td>
<td>x</td>
<td>?</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Relationship between degree spectra

<table>
<thead>
<tr>
<th></th>
<th>∩</th>
<th>⊆</th>
<th>∼</th>
<th>≈</th>
<th>≊</th>
<th>≡</th>
<th>≡n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FRS)</td>
<td>√</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R)</td>
<td>?</td>
<td>✓</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(AM; AK)</td>
<td>?</td>
<td>?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FST) for fixed $n > 1$</td>
<td>?</td>
<td>?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\cong, \approx, \equiv are not Borel.

\approx, \cong are Σ^1_1-complete.
Spectra preserving reductions

Definition (cf. HTMMM, MPSS)
Let \mathcal{C} and \mathcal{D} be categories. An (α)-jump functor between \mathcal{C} and \mathcal{D} is a pair of computable operators (Φ, Φ_*) such that

1. for all $A \in \mathcal{C}_1$, $F(A) = \Phi A^{(\alpha)}$,
2. for all $f : A \to B \in \mathcal{C}_2$, $F(f) = \Phi A^{(\alpha)} \oplus f^{(\alpha)} \oplus B^{(\alpha)}$.

If \mathcal{C} and \mathcal{D} are groupoids (all arrows invertible), then we can define the relationship between categories.

Definition
Two functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \supseteq \text{Sat}_{\mathcal{D}_2}(F(\mathcal{C})) \to \mathcal{C}$ are (effectively) pseudo inverse if there are (computable) operators $\Lambda_{\mathcal{C}}$ and $\Lambda_{\mathcal{D}}$ such that for all $A \in \mathcal{C}$ and $B \in \mathcal{D}$

$$\Lambda_{\mathcal{C}}^A : A \to G(F(A)) \text{ and } \Lambda_{\mathcal{D}}^B : B \to F(G(B)).$$

We call G an (effective) pseudo inverse of F.

We say that F and G are jump effectively pseudo inverses if we require the jump of a structure as oracle in at least one of the Λ.
Examples of categories:

- \(\mathcal{G} \cong \) where objects are graphs and arrows isomorphisms,
- \(\mathcal{G} \approx \) where objects are graphs and arrows are pairs of embeddings \((f, g)\),
- \(\mathfrak{A} \equiv \) where objects are abelian groups and arrows are pairs \((\mathfrak{A}, \mathfrak{B})\) indicating that \(\mathfrak{A} \) and \(\mathfrak{B} \) are elementary equivalent.

Proposition

Let \(\mathcal{C} \) be given by an equivalence relation \(\sim_1 \) and \(\mathcal{D} \) be given by an equivalence relation \(\sim_2 \), then

1. if there is computable \(F : \mathcal{C} \to \mathcal{D} \) with an \((\alpha)\)-jump pseudo-inverse, then for every \(\mathfrak{A} \in \mathcal{C} \)

 \[
 DgSp_{\sim_2}(F(\mathfrak{A})) = \{ d : d^{(\alpha)} \in DgSp_{\sim_1}(\mathfrak{A}) \},
 \]

2. and if \(F \) has an \((\alpha)\)-jump effective pseudo-inverse, then

 \[
 CatSp_{\sim_2}(F(\mathfrak{A})) = \{ d : d^{(\alpha)} \in CatSp_{\sim_1}(\mathfrak{A}) \}.
 \]
Theorem (R.)

There is a functor $F : \mathcal{G} \approx \rightarrow \mathcal{G} \cong$ with a jump computable jump effective pseudo-inverse.

Proof Idea.
We give a functor $\hat{F} : \mathcal{G} \rightarrow \mathcal{G} \cong$ as the composition of two functors:

\[
\begin{array}{cccc}
\mathcal{G} & \rightarrow & H & \rightarrow & \mathcal{G} \cong \\
& & & & \\
& & & & \text{(R. '18)}
\end{array}
\]

\hat{F} induces the functor $F : \mathcal{G} \approx \rightarrow \mathcal{G} \cong$ with the desired properties.
Given $A, B \in \mathcal{G}$ we want to define H such that

$$A \hookrightarrow B \iff H(A) \preceq H(B).$$

Idea: Given $i : A \hookrightarrow B$ but $A \not\preceq B$ there is an $\bar{a} \in A^{<\omega}$ and a formula $\varphi(\bar{x})$ with $A \models \varphi(\bar{a})$ but $B \not\models \varphi(i(\bar{a}))$.

Code the edge relation so that φ gets “pushed” out of the f.o. theory.
The functor $H : \mathcal{G} \rightarrow \Gamma \leq$

Given $\mathcal{A}, \mathcal{B} \in \mathcal{G}$ we want to define H such that

$$\mathcal{A} \leftrightarrow \mathcal{B} \iff H(\mathcal{A}) \leq H(\mathcal{B}).$$

Idea: Given $\iota : \mathcal{A} \leftrightarrow \mathcal{B}$ but $\mathcal{A} \not\equiv \mathcal{B}$ there is an $\bar{a} \in A^{\leq \omega}$ and a formula $\varphi(\bar{x})$ with $\mathcal{A} \models \varphi(\bar{a})$ but $\mathcal{B} \not\models \varphi(\iota(\bar{a})).$

Code the edge relation so that φ gets “pushed” out of the f.o. theory.

We know how to do that! Marker extensions (Pairs of structures)
The functor $H : \mathcal{G} \rightarrow \Gamma_{\leq}$

Given $\mathcal{A}, \mathcal{B} \in \mathcal{G}$ we want to define H such that

$$\mathcal{A} \leftrightarrow \mathcal{B} \Leftrightarrow H(\mathcal{A}) \preceq H(\mathcal{B}).$$

Idea: Given $\iota : \mathcal{A} \leftrightarrow \mathcal{B}$ but $\mathcal{A} \not\equiv \mathcal{B}$ there is an $\bar{a} \in A^{<\omega}$ and a formula $\varphi(\bar{x})$ with $\mathcal{A} \models \varphi(\bar{a})$ but $\mathcal{B} \not\models \varphi(\iota(\bar{a}))$.

Code the edge relation so that φ gets “pushed” out of the f.o. theory.

We know how to do that! Marker extensions (Pairs of structures)

Replace edges with copies of a structure \mathcal{C} and non-edges \mathcal{D}.

For example:

$\mathcal{A} : a \rightarrow b \quad \triangleright \quad \mathcal{g}(\mathcal{A}) : a^g \quad \mathcal{D}$

\mathcal{C}

$\triangleright \quad b^g$
At a minimum we need $\mathcal{C} \equiv \mathcal{D}$.
At a minimum we need $C \equiv D$. To obtain a pseudo-inverse we need C and D with special properties:

Definition

1. A structure \mathcal{A} is **weakly minimal**, if $\mathcal{B} \preceq \mathcal{A}$ implies $\mathcal{B} \cong \mathcal{A}$.
2. A structure \mathcal{A} is **minimal**, if there is no \mathcal{B} such that $\mathcal{B} \preceq \mathcal{A}$.

Question (Vaught): What is the number of minimal models a theory can have?

Theorem (Fuhrken, Shelah)

For every $\kappa \in \omega \cup \{\aleph_0, 2^{\aleph_0}\}$ there is a theory with κ minimal models.
Shelah’s theory

For $\nu \in 2^{<\omega}$ define $F_\nu : 2^\omega \to 2^\omega$, $\sigma \mapsto \nu +_2 \sigma$ (where ν is interpreted as $\nu \sim 0$ and $+_2$ is base 2 addition).

Let $R_\nu = \{\sigma \in 2^\omega : \nu \leq \sigma\}$ and consider the theory T of

$$\mathcal{A} = (2^\omega, \langle F_\nu \rangle_{\nu \in 2^{<\omega}}, \langle R_\nu \rangle_{\nu \in 2^{<\omega}}).$$

Shelah used T and variations of T to prove his theorem. It is easy to see that

1. T has quantifier elimination,
2. the substructure $\langle \sigma \rangle$ generated by $\sigma \in 2^\omega$ is an elementary substructure of \mathcal{A},
3. $\langle \sigma \rangle$ is minimal,
4. if $\sigma \nleq \tau$ and $\tau \nleq \sigma$, then there is a Σ^c_2 sentence distinguishing $\langle \sigma \rangle$ and $\langle \tau \rangle$.
Using $C = \langle 0 \rangle$ and $D = \langle 1 \rangle$ we obtain a computable functor $G \hookrightarrow \rightarrow \Gamma \approx$ and an induced computable functor $G \approx \rightarrow \Gamma \approx$ with an effective pseudo inverse.

The pseudo inverse is jump computable, but not computable. Thus composing the functors we get a functor $F : G \approx \rightarrow G \approx$ with a jump computable effective pseudo inverse.

Corollary

1. *For every graph* \mathcal{A}, $DgSp\approx(F(\mathcal{A})) = \{d : d' \in DgSp\approx(\mathcal{A})\}$.

2. *The elementary bi-embeddability relation on graphs is Σ_1^1-complete.*

Work in progress: Relationship between $CatSp\approx$ and $CatSp\approx$.
Conclusion and open questions

It appears that we can not improve the result using Marker extensions, i.e., we can not get a computable functor with computable pseudo-inverse with this technique.

This result would require new techniques.

Question

Is every jump of an elementary bi-embeddability spectrum an elementary bi-embeddability spectrum, i.e., if X is an elementary bi-embeddability spectrum, is $X' = \{d' : d \in X\}$?

This would imply that no bi-embeddability spectrum can be the union of two cones.
Thank you!