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Organization

This talk is organized as follows.

1. Continuous logic, metric structures, and presentations.

2. Arithmetical hierarchy and computable presentations.

3. Generalized effective completeness.

4. Computable infinitary continuous logic and hyperarithmetic
numerals.

5. Diagram complexity of a computably presented metric
structure.

6. Future work on r.i.c.e. relations in the continuous setting.
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Continuous logic

In metric spaces, the metric encodes more information than simple
equality.

d(x , y) = 0 if and only if x = y .

If d(x , y) < d(x , z), then y is closer to x than z is to x .
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Continuous logic

Model Theory for Metric Structures, Ben Yaacov et al. 2006

Space of truth values is [0, 1] instead of {0, 1}.
▶ d in the place of =.
▶ Continuous predicates instead of relations.
▶ Functions (operations) must be continuous.
▶ inf and sup in the place of ∃ and ∀.
▶ Still has negation ¬.
▶ Has .− instead of reverse implication (←).
▶ Includes an additional logical connective 1

2 .

Since d(x , y) = 0 if and only if x = y , “0” corresponds to truth,
while “1” to falsity.
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Continuous logic

Well-formed formulas (wffs) are defined in the standard way.

Quantifier-free formulas look like

▶ P(t0, ..., tη(P)−1)

▶ ¬φ, 1
2φ, and φ

.− ψ, where φ and ψ are also quantifier-free.
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Continuous logic

The ΣN and ΠN wff’s are defined similarly to the classical case.

For example, let φ be quantifier-free.

▶ supx0 φ is Π1.

▶ infx1 supx0 φ is Σ2.

▶ supxN−1
infxN−2

...φ is ΠN .
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Continuous Logic

Shorthand String
φ ∨ ψ ¬

(
(¬φ) .− ψ

)
φ ∧ ψ φ .− (φ .− ψ)
φ↔ ψ (φ .− ψ) ∨ (ψ .− φ)

0 supx d(x , x)
1 ¬ 0

φ∔ ψ ¬
(
(1 .− φ) .− ψ)

)
mφ

(
...(φ∔ φ)∔ · · ·∔ φ

)︸ ︷︷ ︸
m-many

2−k 1

2
. . .

1

2︸ ︷︷ ︸
k-many

1
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Infinitary continuous logic

For a countable index set I , if (φi )i∈I share a tuple of free variables
and are uniformly equicontinuous in those variables, then∧∧

i∈I
φi and

∨∨
i∈I

φi

are infinitary formulas.
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Metric structures

When (|M|, d) is a pseudometric space of diameter 1,
PM : |M|η(P) → [0, 1] are predicates (functionals),

f M : |M|η(f ) → |M| are functions (operations), and

cM ∈ |M| are points,

M =
(
|M|, d , {PM : P ∈ P}, {f M : f ∈ F}, {cM : c ∈ C}

)
,

is called a continuous L-pre-structure.

If, moreover, (|M|, d) is a complete metric space, then M is an
L-structure.
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Metric structures

The interpretation of sentences in an L-pre-structure M is then
defined as follows.

(
P(t0, ..., tN−1)

)M
:= PM(tM0 , ..., t

M
N−1)

(¬φ)M := 1− φM
(1
2
φ
)M

:=
1

2
φM

(φ .− ψ)M := max{0, φM − ψM}

(
sup
x
φ(x)

)M
:= sup

a∈|M|
φM(a)

(
inf
x
φ(x)

)M
:= inf

a∈|M|
φM(a)
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Metric structures

Moreover, the interpretation of infinitary formulas sentences is as
follows.

(∧∧
i∈I

φi

)M
:= inf

i∈I
φM
i

(∨∨
i∈I

φi

)M
:= sup

i∈I
φM
i
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Metric structures

M satsifies (or models) φ if φM = 0.

(M ⊨ φ)

When Γ is a set of wffs, M ⊨ Γ means M ⊨ φ for every φ ∈ Γ.
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Metric structures

Example

The unit ball of a Banach space over R, the metric induced by the
norm, as functions all binary maps of the form

fα,β(x , y) = αx + βy

where |α|+ |β| ≤ 1 as scalars, and the additive identity 0 and
some choice of normal basis (ei )i∈I as distinguished points.

(
d(f 3

4
,0(e0, e3), 0)

)M
=

∥∥(3
4 · e0 + 0 · e3

)
− 0

∥∥ = 3
4 .
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Metric structures

N.B. Any classical structure can be made a metric structure by
applying the discrete metric.

In this case, the metric just serves to indicate equality.
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Presentations

Given a structure M and A ⊆ |M|, we define the algebra generated
by A to be the smallest subset of |M| containing A that is closed
under every function of M.

A pair (M, g) is called a presentation of M if g : N→ |M| is a
map such that the algebra generated by ran(g) is dense.
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Presentations

Given a presentation M♯ = (M, g), every a ∈ ran(g) is called a
distinguished point of M♯.

Each point in the algebra generated by the distinguished points is
called a rational point of M♯.
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The Arithmetical Hierarchy

Definition
The Σ0

n, Π
0
n, and ∆0

n sets are defined recursively for every
n ∈ N \ {0}.

A set A ⊆ N is

▶ Σ0
1 if there is some computable binary relation R ⊆ N2 such

that
k ∈ A ⇐⇒ ∃s ∈ N R(s, k);

▶ Π0
1 if there is some computable binary relation R ⊆ N2 such

that
k ∈ A ⇐⇒ ∀s ∈ N R(s, k);
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The Arithmetical Hierarchy

▶ Σ0
n if there is some Π0

n−1 binary relation R ⊆ N2 such that

k ∈ A ⇐⇒ ∃s ∈ N R(s, k);

▶ Π0
n if there is some Σ0

n−1 binary relation R ⊆ N2 such that

k ∈ A ⇐⇒ ∀s ∈ N R(s, k);

▶ ∆0
n if it is both Σ0

n and Π0
n.
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The (Hyper)arithmetical Hierarchy

A set A ⊆ N is arithmetical if it is Σ0
n for some n ∈ N.

There is natural way of extending each of the above classes to Σ0
α,

Π0
α, and ∆0

α for every computable ordinal α.

A set A ⊆ N is hyperarithmetical if it is Σ0
α for some computable

ordinal α.
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Computable presentations

Definition
Let A be a countable set. A map f : A→ R is computable if there
is an effective procedure which, given a ∈ A and k ∈ N, outputs a
rational q such that

|f (a)− q| < 2−k .

Definition
A presentation M♯ is computable if the predicates of M are
uniformly computable on the rational points of M♯.

We say that a metric structure is computably presentable if it has
a computable presentation.
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Motivation for First Result

Foundations of recursive model theory, Terrence Millar, 1978.

Theorem (Effective Completeness)

In classical logic, if a theory is decidable (meaning its set of
consequences is computable), then it is modeled by a computable
structure.
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Generalized Effective Completeness

Definition (Ben Yaacov and Pedersen, 2010)

Let Γ be a set of wffs. The degree of truth with respect to Γ ( · ◦Γ)
is a map from wffs to [0, 1], defined as

φ◦
Γ := sup

{
φM : M ⊨ Γ

}
.

Definition (Ben Yaacov and Pedersen, 2010)

A theory T is decidable if ·◦T is a computable map from (φn)n∈N
into [0, 1].
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Generalized Effective Completeness

Definition
Given a theory T , we say that X ∈ NN is a name of T if the
following hold.

▶ For every n, k ∈ N, there is some m ∈ N such that
⟨n, k ,m⟩ ∈ ran(X ).

▶ For every n, k ,m ∈ N, if ⟨n, k ,m⟩ ∈ ran(X ), then
qm ∈

[
(φn)

◦
T − 2−k , (φn)

◦
T + 2−k

]
.

Proposition

A theory is decidable if and only if it has a computable name.
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Generalized Effective Completeness

Lemma
There is an effective procedure which given X , a name of an
L-theory T , outputs Φ(X ) ⊆ N such that T ∪ {θn : n ∈ Φ(X )} is
consistent, and for every pair of wffs φ and ψ, either φ is provably
equivalent to ψ, or exactly one of φ .− ψ or ψ .− φ is in
{θn : n ∈ Φ(X )}.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Generalized Effective Completeness

Theorem (Generalized Effective Completeness)

There is an effective procedure which, given X , a name of an
L-theory T , produces a presentation of a structure M such that
M ⊨ T .

Corollary (Effective Completeness of Continuous Logic)

Every decidable theory is modeled by a computably presentable
structure.
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Motivation for Second Result

Ben Yaacov and Pedersen (2010) noted that for any dyadic
r ∈ [0, 1] (i.e., number of the form ℓ

2k
), there is a finitary sentence

which is universally interpreted as r .

(Recall the shorthands given
previously.)

▶ 0 := supx d(x , x).

▶ 1 := ¬0.
▶ 1

2k
:= 1

2 ...
1
2 1. (k-many 1

2 connectives)

▶ ℓ
2k

:= ¬
(
1 .− 1

2k
.− ... .− 1

2k

)
. (ℓ-many .− 1

2k
terms)

But what if we consider computable infinitary formulas?
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Computable Infinitary Formulas

Heuristic
The computable infinitary wffs are heuristically given as follows,
where α is a computable ordinal.

▶ The Σc
0 = Πc

0 sets include all quantifier-free, finitary wffs.

▶ A wff φ is Σc
α if it is of the form

φ =
∧∧
i∈I

inf
x⃗
ψi

where I ⊆ N is c.e., each ψi ∈ Πc
β, for some β < α, and a

modulus of continuity for φ exists that is computable from a
code for φ.
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Computable Infinitary Formulas

▶ A wff φ is Πc
α if it is of the form

φ =
∨∨
i∈I

sup
x⃗
ψi

where I ⊆ N is c.e., each ψi ∈ Σc
β, for some β < α, and a

modulus of continuity for φ exists that is computable from a
code for φ.
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Hyperarithmetical Numerals

Theorem (C., McNicholl)

There is an effective procedure which, given a hyperarithmetical
right Dedekind cut of a real number r ∈ [0, 1], outputs a
computable infinitary sentence such that the following hold.

▶ If the right Dedekind cut given is Π0
α, then the output is a Πc

α

sentence φ such that for every structure M, φM = r .

▶ If the right Dedekind cut given is Σ0
α, then the output is a Σc

α

sentence φ such that for every structure M, φM = r .
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Discussion of Second Result

In other words, for any nonzero computable ordinal α and any
right Π0

α (or Σ0
α) real number r ∈ [0, 1], there is a Πc

α (respectively,
Σc
α) sentence φ such that for every metric structure M, φM = r .

These are numerals!

Corollary (C., McNicholl)

Suppose M is an interpretation of Lcω1ω, and suppose X computes
the continuous theory of M. Then, X computes every
hyperarithmetic set. Thus, no hyperarithmetic set computes the
continuous theory of any metric structure.
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Discussion of Second Result

We proved this by effective transfinite recursion on notations of
computable ordinals.

Along the way, we provided the following new
definition and lemma.

N.B. Though slightly unconventional, for s ∈ R, by “a right
Dedekind cut of s”, we mean either D>(s) or D≥(s).

Definition
Let (rn)n∈ω be a sequence of real numbers and g : ω → ωCK

1 . We
say (rn)n∈ω is weakly uniformly right Σ0

g (Π0
g ) if there is a

computable function f : ω → ω such that for all n ∈ ω, f (n) is a
Σ0
g(n) (Π

0
g(n)) index of a right Dedekind cut of rn.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Discussion of Second Result

We proved this by effective transfinite recursion on notations of
computable ordinals. Along the way, we provided the following new
definition and lemma.

N.B. Though slightly unconventional, for s ∈ R, by “a right
Dedekind cut of s”, we mean either D>(s) or D≥(s).

Definition
Let (rn)n∈ω be a sequence of real numbers and g : ω → ωCK

1 . We
say (rn)n∈ω is weakly uniformly right Σ0

g (Π0
g ) if there is a

computable function f : ω → ω such that for all n ∈ ω, f (n) is a
Σ0
g(n) (Π

0
g(n)) index of a right Dedekind cut of rn.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Discussion of Second Result

We proved this by effective transfinite recursion on notations of
computable ordinals. Along the way, we provided the following new
definition and lemma.

N.B. Though slightly unconventional, for s ∈ R, by “a right
Dedekind cut of s”, we mean either D>(s) or D≥(s).

Definition
Let (rn)n∈ω be a sequence of real numbers and g : ω → ωCK

1 . We
say (rn)n∈ω is weakly uniformly right Σ0

g (Π0
g ) if there is a

computable function f : ω → ω such that for all n ∈ ω, f (n) is a
Σ0
g(n) (Π

0
g(n)) index of a right Dedekind cut of rn.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Discussion of Second Result

We proved this by effective transfinite recursion on notations of
computable ordinals. Along the way, we provided the following new
definition and lemma.

N.B. Though slightly unconventional, for s ∈ R, by “a right
Dedekind cut of s”, we mean either D>(s) or D≥(s).

Definition
Let (rn)n∈ω be a sequence of real numbers and g : ω → ωCK

1 . We
say (rn)n∈ω is weakly uniformly right Σ0

g (Π0
g ) if there is a

computable function f : ω → ω such that for all n ∈ ω, f (n) is a
Σ0
g(n) (Π

0
g(n)) index of a right Dedekind cut of rn.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Discussion of Second Result

Lemma (C., McNicholl)
Let α ∈ ωCK
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Motivation for Final Results

We are then led to our final motivating question:

If a metric structure is computably presentable, how complex is the
continuous theory of that structure?

That is, given a computable presentation and a ΣN (or ΠN)
sentence in the language of continuous logic, how hard is it for a
computer to determine the truth-value of that sentence?

Similarly, we can also ask the same question about computable
infinitary sentences in continuous logic.
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Diagram Complexity

Another way of phrasing this question is in terms of diagrams.

A diagram of structure basically just describes the truth value of
every sentence of a given complexity.

E.g. The classical Σ1 diagram of a structure describes the truth or
falsity of every Σ1 sentence.
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Diagram Complexity

As the truth value of a sentence of continuous logic may be any
real in [0, 1], we introduce two kinds of diagrams at each level.

The closed ΣN diagram is

{(φ, r) : φ ∈ ΣN and φM ≤ r}.

The open ΣN diagram is

{(φ, r) : φ ∈ ΣN and φM < r}.

The ΠN diagrams relativize.
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Intuition

The problem of uniformly deciding if one computable real number
is less than another is Σ0

1-complete.

Why? Computably check the nth digit of each number until you
find a difference.

The problem of uniformly deciding if one computable real number
is less than or equal to another is Π0

1-complete.

Why? To check equality, you would need to computably check
every digit of each number to guarantee they all match.
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Intuition

Recall the classical result:

ΣN , {0, 1} → Σ0
N

ΠN , {0, 1} → Π0
N
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Intuition

In the continuous case:

ΣN , <, [0, 1] → Σ0
1Σ

0
N → Σ0

N

ΣN , ≤, [0, 1] → Π0
1Σ

0
N → Π0

N+1

ΠN , <, [0, 1] → Σ0
1Π

0
N → Σ0

N+1

ΠN , ≤, [0, 1] → Π0
1Π

0
N → Π0

N
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Summary of Finitary Result(s)

Theorem (C., Goldbring, McNicholl)

Let M be a computably presentable L-structure, and let N be a
positive integer.

1. The closed quantifier-free diagram of M is Π0
1, and the open

quantifier-free diagram of M is Σ0
1.

2. The closed ΠN diagram of M is Π0
N , and the open ΠN

diagram of M is Σ0
N+1.

3. The closed ΣN diagram of M is Π0
N+1, and the open ΣN

diagram of M is Σ0
N .
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Summary of Finitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′ and a computably presentable L′-structure
M with the following properties:

1. The closed quantifier-free diagram of M is Π0
1-complete, and

the open quantifier-free diagram of M is Σ0
1-complete.

2. For every positive integer N, the closed ΠN diagram of M is
Π0
N -complete, and the open ΠN diagram of M is

Σ0
N+1-complete.
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Π0
N+1-complete, and the open Σ0

N diagram of M is
Σ0
N -complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Finitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′ and a computably presentable L′-structure
M with the following properties:

1. The closed quantifier-free diagram of M is Π0
1-complete, and

the open quantifier-free diagram of M is Σ0
1-complete.

2. For every positive integer N, the closed ΠN diagram of M is
Π0
N -complete, and the open ΠN diagram of M is

Σ0
N+1-complete.

3. For every positive integer N, the closed ΣN diagram of M is
Π0
N+1-complete, and the open Σ0

N diagram of M is
Σ0
N -complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Finitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′ and a computably presentable L′-structure
M with the following properties:

1. The closed quantifier-free diagram of M is Π0
1-complete, and

the open quantifier-free diagram of M is Σ0
1-complete.

2. For every positive integer N, the closed ΠN diagram of M is
Π0
N -complete, and the open ΠN diagram of M is

Σ0
N+1-complete.

3. For every positive integer N, the closed ΣN diagram of M is
Π0
N+1-complete, and the open Σ0

N diagram of M is
Σ0
N -complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Finitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′ and a computably presentable L′-structure
M with the following properties:

1. The closed quantifier-free diagram of M is Π0
1-complete, and

the open quantifier-free diagram of M is Σ0
1-complete.

2. For every positive integer N, the closed ΠN diagram of M is
Π0
N -complete, and the open ΠN diagram of M is

Σ0
N+1-complete.

3. For every positive integer N, the closed ΣN diagram of M is
Π0
N+1-complete, and the open Σ0

N diagram of M is
Σ0
N -complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Infinitary Result(s)

Theorem (C., Goldbring, McNicholl)

Let M be a computably presentable L-structure and let φ be a
computable infinitary sentence of L.

1. If φ is Πc
α, then D>(φM) is Σ0

α+1 uniformly in a code of φ,
and D≥(φM) is Π0

α uniformly in a code of φ.

2. If φ is Σc
α, then D>(φM) is Σ0

α uniformly in a code of φ, and
D≥(φM) is Π0

α+1 uniformly in a code of φ.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Infinitary Result(s)

Theorem (C., Goldbring, McNicholl)

Let M be a computably presentable L-structure and let φ be a
computable infinitary sentence of L.

1. If φ is Πc
α, then D>(φM) is Σ0

α+1 uniformly in a code of φ,
and D≥(φM) is Π0

α uniformly in a code of φ.

2. If φ is Σc
α, then D>(φM) is Σ0

α uniformly in a code of φ, and
D≥(φM) is Π0

α+1 uniformly in a code of φ.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Infinitary Result(s)

Theorem (C., Goldbring, McNicholl)

Let M be a computably presentable L-structure and let φ be a
computable infinitary sentence of L.

1. If φ is Πc
α, then D>(φM) is Σ0

α+1 uniformly in a code of φ,
and D≥(φM) is Π0

α uniformly in a code of φ.

2. If φ is Σc
α, then D>(φM) is Σ0

α uniformly in a code of φ, and
D≥(φM) is Π0

α+1 uniformly in a code of φ.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Infinitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′′ and an L′′-structure M so that the
following hold for every computable ordinal α.

1. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α-complete.

2. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α-complete.

3. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α+1-complete.

4. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α+1-complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Infinitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′′ and an L′′-structure M so that the
following hold for every computable ordinal α.

1. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α-complete.

2. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α-complete.

3. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α+1-complete.

4. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α+1-complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Infinitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′′ and an L′′-structure M so that the
following hold for every computable ordinal α.

1. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α-complete.

2. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α-complete.

3. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α+1-complete.

4. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α+1-complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Summary of Infinitary Result(s)

Theorem (C., Goldbring, McNicholl)

There is a signature L′′ and an L′′-structure M so that the
following hold for every computable ordinal α.

1. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α-complete.

2. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α-complete.

3. There is a computable sequence (ψi )i∈N of Πc
α sentences of

L′′ so that {i : 1
2 ∈ D>(ψM

i )} is Σ0
α+1-complete.

4. There is a computable sequence (ψi )i∈N of Σc
α sentences of

L′′ so that {i : 1
2 ∈ D≥(ψM

i )} is Π0
α+1-complete.

Caleb M.H. Camrud Brown University (Iowa State University)

Computable Structure Theory of Continuous Logic



Discussion of Diagram Result(s)

The results may be intuitive, but proving optimality was not!

Two initial ideas:

1. True arithmetic with the discrete metric (=); realizes
optimality in classical case.

2. [0, 1] with the Euclidean metric; simplest continuous structure.

But neither of these work!
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Discussion of Diagram Result(s)

In the case of true arithmetic, since truth remains discretely valued
(other than trivial application of the 1

2 connective), we have the
following.

1. Both the open and closed ΠN diagrams are Π0
N -complete.

2. Both the open and closed ΣN diagrams are Σ0
N -complete.
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Discussion of Diagram Result(s)

In the case of [0, 1] with the Euclidean metric, recall that the
standard presentation of this structure is computably compact.

We
proved the following.

Proposition (C., Goldbring, McNicholl)

Let M♯ be a computably compact computable presentation of an
L-structure M. Then the open diagram of M is Σ0

1 and the closed
diagram of M is Π0

1.

This result follows from the standard result in computable analysis
that maxima and minima of computable functions are computable
on computably compact spaces. Thus we don’t even achieve
optimality in the simple cases!
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Discussion of Diagram Result(s)

Our space needed to be non-compact.

We then returned to the
natural numbers with the discrete metric (in some sense, the
simplest non-compact space).

Since true arithmetic wouldn’t suffice, we constructed a new
structure via a combinatorial lemma.
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Discussion of Diagram Result(s)

Theorem (C., Goldbring, McNicholl)

Let R ⊆ NN+2, and let n ∈ N.
1. n ∈ ∀⃗R if and only if

inf
x1

sup
x2
. . .QxNΓ(1−

1

2
χR∗ ; x1, . . . , xN , n) ≤

1

2
.

2. n ∈ ∃⃗R if and only if

sup
x1

inf
x2
. . .QxNΓ(

1

2
χ(¬R)∗ ; x1, . . . , xN , n) <

1

2
.

∀⃗R and ∃⃗R are just sets coded by relations and Γ is a special
summation function.
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Applications of Diagram Result(s)

Corollary

Let M be an L-structure with a computably compact computable
presentation. Then the theory of M is ∆0

2.

In Harrison-Trainor, Melnikov, and Meng Ng (2020), it was shown
that any computable Stone space has a computably compact
computable presentation. We thus attain the following.

Corollary

Let X be a computable Stone space. Then the (continuous) theory
of X is ∆0

2.
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Applications of Diagram Result(s)

Corollary

Let M be an L-structure with an (hyper)arithmetic presentation.
Then the theory of M is also (hyper)arithmetic.

This has already been applied in Goldbring and Hart (2020) in the
proof of the following.
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Applications of Diagram Result(s)

Theorem (Theorem 1.1, Goldbring and Hart, 2020)

The following operator algebras have hyperarithmetic theory.
(1) The hyperfinite II1 factor R.
(2) L(Γ) for Γ a finitely generated group with solvable word
problem.
(3) C ∗(Γ) for Γ a finitely presented group.
(4) C ∗

λ(Γ) for Γ a finitely generated group with solvable word
problem.
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Future Work

▶ R.i.c.e. (relatively intrinsically computably enumerable)
predicates (relations) in the continuous setting?

▶ Optimal bounds on all diagrams for the hyperfinite II1 factor
R?

▶ Enforceable operator algebras and effective completeness?
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Future Work

In each of the following, M is a computably presentable metric
structure. Whenever we refer to a set being open or closed, we
mean with respect to the topology induced on the universe of M
by its metric.

We currently investigate only unary predicates as a toy case (once
this is proven, the results should easily generalize).

Definition
Fix a computable presentation M♯ of M. An open set U ⊆ |M| is
a c.e. open set of M♯ if there is a computable sequence (Bj)j∈N of
rational open balls of M♯ such that U =

⋃
j∈N Bj .
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Future Work

Definition
An open set U ⊆ |M| is an intrinsically c.e. open relation if for
every computable presentation M♯ of M, U is a c.e. open set of
M♯.

Definition
An open set U ⊆ |M| is a relatively intrinsically c.e. open relation
(r.i.c.e. open) if there is some finite tuple c ∈ |M|n such that for
every computable presentation (M, c)♯ of (M, c), there is an
enumeration operator Φ such that for any enumeration
γ : N→ D<((M, c)♯), Φ(γ) is a sequence (Bj)j∈N of rational open
balls of M♯ such that U =

⋃
j∈N Bj .
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Future Work

Definition
An open set U ⊆ |M| is Σc

1-definable with parameters in M if
there is some finite tuple c ∈ |M|n and a Σc

1-formula φ such that

a ∈ U ⇐⇒ (φ(a, c))M <
1

2
.

Conjecture

Let U ⊆ |M| be open. Then the following are equivalent.

(a) U is a r.i.c.e. open relation.

(b) U is Σc
1-definable with parameters in M.
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QUESTIONS?
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