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“Asymptotic class” is a family of concepts about finite structures which
have restrictions on the cardinalities of definable sets. The first to be
explicitly named was the one-dimensional asymptotic classes:

Definition (Macpherson & Steinhorn 08)

A family (Mk : k ∈ ω) of finite L-structures is a one-dimensional
asymptotic class if for every L-formula φ(x1, . . . , xn, ȳ), there are
L-formulas π1(ȳ), . . . , πr (ȳ), pairs (µ1, d1), . . . , (µr , dr ) ∈ R× {1, . . . , n}
and a number C ∈ R such that

the sets π1(M
|ȳ |
k ), . . . , πr (M

|ȳ |
k ) partition M

|ȳ |
k for each (sufficiently

large) k , and

if b̄ ∈ πi (M
|ȳ |
k ) then

∣∣|φ(Mn
k , b̄)− µi |Mk |di

∣∣ < C |M|di−1/2.

Theorem (Chatzidakis, Van den Dries & Macintrye 92)

The class of finite fields is a one-dimensional asymptotic class.

Alex Van Abel (Wesleyan University) Probabilistic R-Macs October 14 2023 – NERDS 24.0 2 / 27



“Asymptotic class” is a family of concepts about finite structures which
have restrictions on the cardinalities of definable sets. The first to be
explicitly named was the one-dimensional asymptotic classes:

Definition (Macpherson & Steinhorn 08)

A family (Mk : k ∈ ω) of finite L-structures is a one-dimensional
asymptotic class if for every L-formula φ(x1, . . . , xn, ȳ), there are
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L-formulas π1(ȳ), . . . , πr (ȳ), pairs (µ1, d1), . . . , (µr , dr ) ∈ R× {1, . . . , n}
and a number C ∈ R such that

the sets π1(M
|ȳ |
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|ȳ |
k ) partition M

|ȳ |
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Definition (Anscombe, Macpherson, Steinhorn, Wolf 16)

Let R be a set of functions h : {M : M is an L-structure} → R. A
sequence (Mk : k ∈ ω) of L-structures is an R-multidimensional
asymptotic class (R-mac) if for every L-formula φ(x̄ , ȳ), there are
L-formulas π1(ȳ), . . . , πr (ȳ) and functions h1, . . . , hr ∈ R such that

the sets π1(M
|ȳ |
k ), . . . , πr (M

|ȳ |
k ) partition M

|ȳ |
k for each (sufficiently

large) k , and

if b̄ ∈ πi (M
|ȳ |
k ) then

∣∣|φ(Mn
k , b̄)− hi (Mk)

∣∣ = o(hi (Mk)).

A one-dimensional asymptotic class is an R-mac where R is the set of
functions {M 7→ µ|M|d : µ ∈ R, d ∈ N}.

An N-dimensional asymptotic class (introduced by Elwes) is an R-mac
where R is the set of functions {M 7→ µ|M|d/N : µ ∈ R, d ∈ N}.
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|ȳ |
k for each (sufficiently

large) k , and

if b̄ ∈ πi (M
|ȳ |
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|ȳ |
k ) then

∣∣|φ(Mn
k , b̄)− hi (Mk)

∣∣ = o(hi (Mk)).

A one-dimensional asymptotic class is an R-mac where R is the set of
functions {M 7→ µ|M|d : µ ∈ R, d ∈ N}.

An N-dimensional asymptotic class (introduced by Elwes) is an R-mac
where R is the set of functions {M 7→ µ|M|d/N : µ ∈ R, d ∈ N}.

Alex Van Abel (Wesleyan University) Probabilistic R-Macs October 14 2023 – NERDS 24.0 3 / 27



Definition (Anscombe, Macpherson, Steinhorn, Wolf 16)

Let R be a set of functions h : {M : M is an L-structure} → R. A
sequence (Mk : k ∈ ω) of L-structures is an R-multidimensional
asymptotic class (R-mac) if for every L-formula φ(x̄ , ȳ), there are
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|ȳ |
k ) partition M

|ȳ |
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Definition

A random L-structure is formally a probability distribution on the set of all
L-structures on a fixed universe.

In this talk, all random structures considered will be finite – so there is no
care we need to take with measurability issues, and we may consider the
probability of any property of the random structure M̂.
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Definition

Let n ∈ ω and p ∈ [0, 1]. The Erdős-Rényi random graph Ĝ (n, p) is the
random graph on n vertices formed by letting each of the

(n
2

)
possible

edges appear independently with probability p.

Definition

Let α ∈ (0, 1). The Spencer-Shelah random graph sequence with
parameter α is the sequence (Ĝα

n := Ĝ (n, n−α) : n ∈ ω).
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Definition

Let (Mn : n ∈ ω) be a sequence of random L-structures.
The zero-one theory of the sequence is the set of L-sentences

{ϕ : lim
n→∞

P(Mn |= ϕ) = 1}.

Theorem (Fagin)

For a fixed p ∈ (0, 1), the sequence (Ĝ (n, p) : n ∈ ω) has the theory of the
Rado random graph as its zero-one theory.

Theorem (Spencer & Shelah)

If α is irrational, the Spencer-Shelah random graph sequence with
parameter α has a complete zero-one theory Tα.
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Definition (V.)

Let R be a set of functions from {M : M is an L-structure} to R. Let
φ(x̄ ; ȳ) be an L-formula.
A sequence (M̂n : n ∈ ω) of random L-structures is a probabilistic R-mac
for φ if there are L-formulas π1(ȳ), . . . , πr (ȳ) and functions h1, . . . , hr ∈ R
such that for every ϵ > 0, the probabilities of the following statements go
to 1 as n goes to infinity:

the sets π1(M
|ȳ |
n ), . . . , πr (M̂

|ȳ |
n ) partition M̂

|ȳ |
n , and

if b̄ ∈ πi (M̂
|ȳ |
n ) then (1− ϵ)hi (M̂n) < |φ(M̂ |x̄ |

n , b̄)| < (1 + ϵ)hi (M̂n)

(M̂n : n ∈ ω) is a probabilistic R-mac if it is a probabilistic R-mac for
every formula φ(x̄ , ȳ).

Note: The functions hi are defined on (deterministic) L-structures; the
expression hi (M̂n) is a real-valued random variable.
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φ(x̄ ; ȳ) be an L-formula.
A sequence (M̂n : n ∈ ω) of random L-structures is a probabilistic R-mac
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Proposition

Let (M̂n : n ∈ ω) be a probabilistic R-mac. For each n, let Xn,1,Xn,2, . . .
be a sequence of statements (events) about the structure M̂n. Suppose
that for each k, we have

lim inf
n→∞

P(M̂n satisfies Xn,1,Xn,2, . . . , and Xn,k) > 0.

Then we can find an R-mac (M1,M2, . . .) such that for every k, Mn

satisfies Xn,k for cofinitely many n.

Note

For example, we can ensure that the zero-one theory of the M̂n is
(contained in) the limit theory of the Mn.
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Proposition

To show that a sequence (M̂n : n ∈ ω) of random structures is a
probabilistic R-mac, it suffices to show that it is a probabilistic R-mac for
every formula φ(x1; ȳ) with a single object variable (provided that R is
asymptotically closed under addition and multiplication).

Proof.

Routine fiber-decomposition proof. To show R is a probabilistic R-mac for
φ(x1 . . . xk ; ȳ), re-contextualize the variables as φ(x1; x2 . . . xk ȳ) and
obtain estimates for |φ(M̂n; a2 . . . ak b̄)|, definably for a2 . . . ak b̄) by
formulas πi (x2 . . . xk ȳ). By induction, obtain cardinality bounds for
|πi (M̂k−1

n , b̄)|, and use these to bound the size of |φ(M̂k
n , b̄)|.
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If C is a class of (deterministic) finite structures, we say C is a probabilistic
R-mac if (M̂n : n ∈ ω) is, where M̂n is the uniform distribution on all
structures in C with universe {1, . . . , n}.

Proposition

The class of all finite graphs is a probabilistic R-mac, where R is the set
{M 7→ µ|M|d : µ ∈ R, d ∈ N} (a probabilistic one-dimensional asymptotic
class).
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Proof Sketch

The sequence of uniform distributions for finite graphs is the same as
the Erdős-Rényi sequence (Ĝ (n, 1/2) : n ∈ ω).

This has a complete limit theory, the theory of the random graph,
which has quantifier elimination.

By quantifier elimination and the one-variable lemma, it suffices to
check the R-pmac condition for formulas of the form
ϕ(x , ȳ) =

∧
i xEyi ∧

∧
j ¬xEyj ∧ ρ(x , ȳ), where ρ(x , ȳ) expresses that

all elements are distinct.

That is, we wish to obtain estimates for |{a ∈ Ĝn : Ĝn |= ϕ(a, b̄)}| for
b̄ ∈ Ĝn.

Assuming that all bi are distinct, the probability that a given a /∈ b̄
satisfies ϕ(a, b̄) is 2−|ȳ |. Furthermore, these events are mutually
independent for different a.
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b̄ ∈ Ĝn.
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By quantifier elimination and the one-variable lemma, it suffices to
check the R-pmac condition for formulas of the form
ϕ(x , ȳ) =

∧
i xEyi ∧

∧
j ¬xEyj ∧ ρ(x , ȳ), where ρ(x , ȳ) expresses that

all elements are distinct.

That is, we wish to obtain estimates for |{a ∈ Ĝn : Ĝn |= ϕ(a, b̄)}| for
b̄ ∈ Ĝn.

Assuming that all bi are distinct, the probability that a given a /∈ b̄
satisfies ϕ(a, b̄) is 2−|ȳ |. Furthermore, these events are mutually
independent for different a.
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Hoeffding’s Inequality (Bernoulli Version)

Suppose X1, . . . ,Xn are independent Bernoulli random variables. Let
Sn =

∑
i≤n Xi . Then P(|Sn − E[Sn]| ≥ t) ≤ e−2t2/n.

Proof Sketch Cont’d

|{a ∈ Ĝn : ab̄ ∈ ϕ(Ĝ
1+|ȳ |
n )}| is a sum of Bernoulli RV’s as in

Hoeffding’s Inequality, with expectation (n − |ȳ |) · 2−k = 2−kn + c

For a given ϵ, the probability that this number is not between
(1− ϵ)2−kn and (1 + ϵ)2−kn is ≤ exp(−2(ϵ2−kn)2/n) = exp(−ηn)
for η = 2−2k−1ϵ. This goes to 0 as n → ∞.
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1+|ȳ |
n )}| is a sum of Bernoulli RV’s as in

Hoeffding’s Inequality, with expectation (n − |ȳ |) · 2−k = 2−kn + c
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Proposition

The class of all finite partial orders is a probabilistic one-dimensional
asymptotic class.

Proof Sketch

We rely on the following theorem of Kleitman & Rothschild (75):

Asymptotically most finite partial orders on {1, . . . , n} have three
layers in their Hasse diagram, with middle layer of size approximately
n/2 and top and bottom layers approximately n/4.

The uniform distribution on these partial orders can be modeled as an
independent-coin-flip random structure, similar to the random graph.

Therefore single-variable definable sets in the random partial order on
{1, . . . , n} have cardinality approximately 2−kn for some k, by the
same argument as in the random graph.
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Theorem

For irrational α ∈ (0, 1), the Spencer-Shelah random graph sequence is a
probabilistic Rα-mac, where Rα is the set of functions
{M 7→ k|M|a−bα : k, a, b ∈ N}.

Proof Sketch

We rely on the following quantifier elimination result from Laskowski.

Notation: For a graph B on {1, . . . , k}, let ∆B(v1 . . . vk) be the
formula

∧
iEj viEvj ∧

∧
¬iEj ¬viEvj . Let ∆

+
B (v1 . . . vk) be

∧
iEj viEvj .

Theorem (Laskowski 07)

The theory Tα admits quantifier elimination down to formulas of the form
ϕ(x̄) := ∃z̄∆B(x̄ z̄).

Proof Sketch Continued

Observe: complete quantifier-free formulas are formulas of the above
form for |z̄ | = 0.
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Theorem

For irrational α ∈ (0, 1), the Spencer-Shelah random graph sequence is a
probabilistic Rα-mac, where Rα is the set of functions
{M 7→ k|M|a−bα : k, a, b ∈ N}.

Proof Sketch Continued

By quantifier elimination, it suffices to show that (Ĝα
n : n ∈ ω) is an

Rα-pmac for conjunctions of formulas of the form
ϕ(x , ȳ) := ∃z̄∆B(x , ȳ , z̄) and their negations.

We first show asymptoticity results for quantifier-free formulas (i.e.
the case |z̄ | = 0)

Given b̄ ∈ Ĝα
n , we show how to write the cardinality of

{a :
∧

i ∃z̄∆Bi
(a, b̄, z̄)} as a linear combination (possibly with

negative coefficients) of cardinalities |{c̄ : ∆C (b̄, c̄)}| as C ranges
over finitely many graphs.

We then sketch how to deal with including conjuncts of the form
¬∃z̄∆B(x , b̄, z̄).
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Definition

Let A ⊆ B be graphs. δα(B/A) is the quantity v − eα, where v is the
number of vertices in B \ A and e is the number of edges in B which do
not have both endpoints in A.

Definition

Let A ⊆ B be graphs.
We say that B is safe over A if for every A ⊂ C ⊆ B ⊆, δ(C/A) > 0.
We say that B is rigid over A if for every A ⊆ C ⊂ B, δ(B/C ) < 0.

Tα implies the following sentences about the graph G

If δ(A/∅) < 0, then G contains no copy of A

If A ⊆ B is a safe extension, then every copy of A extends to a copy
of B.

If A ⊆ B is a rigid extension, then every copy of A extends to at most
K (B/A) copies of B (for some fixed number K (B/A).
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Proposition (Spencer & Shelah)

Let B be a graph on {1, . . . , k , k + 1, . . . , k + l}, and let A be the
subgraph on {k + 1, . . . , k + l}. Then for any b̄ ∈ ∆+(G l

n) (b̄ ∈ ∆(G l
n)),

E[|∆+
B (G

k
n , b̄)|] ≈ nδ(B/A) (≈ E[|∆B(G

k
n , b̄)|]).

Proof.

There are (n − l)(n − l − 1) . . . (n − l − (k − 1)) ≈ nk extensions of b̄ to
(k + l)-tuples āb̄. For any such (k + l)-tuple to be an element of
∆+

B (G
k
n , b̄), we need each of the e edges of B to occur, where e is the

number in δ(B/A) = v − eα. The probability that this happens is
(n−α)e = n−eα. By linearity of expectation, the expected number of
elements in ∆+(G l

n) is ≈ nk · n−eα = nk−eα = nδ(B/A).
For δB(G

k
n , b̄), we note that ā ∈ δB(G

k
n , b̄) iff ā ∈ ∆+

B (G
k
n , b̄) and

ā /∈ ∆+
B′(G k

n , b̄) for any graph B ′ for which B is a proper spanning
subgraph, and for any such B ′, δ(B ′/A) ≤ δ(B/A)− α.
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n) (b̄ ∈ ∆(G l
n)),

E[|∆+
B (G

k
n , b̄)|] ≈ nδ(B/A) (≈ E[|∆B(G

k
n , b̄)|]).

However, this is different from saying that the actual number of extensions
of b̄ is asymptotically equal to nδ(B/A). This is not generally the case: if B
is not safe over A, then most copies of A do not extend to B, even though
the expected number of copies is positive.

On the other hand...
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On the other hand...
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Theorem (Kim & Vu (2000))
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n), n
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B (G

k
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Corollary
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n ) < |∆B((Ĝ
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It is relatively easy to remove the restriction that B is safe.

Proposition

Let A ⊆ B be a graph extension. Then there is a unique intermediate
subgraph A ⊆ rs(A,B) ⊆ B such that rs(A,B) is rigid over A and B is
safe over rs(A,B).

Definition

Define δ⋆(B/A) to be δ(B/R), where R = rs(A,B). Define K ⋆(B/A) to
be K (R/A) (the maximum number of extensions of a copy of A to a copy
of R in Tα)

Corollary

Let B be a graph. Then (Ĝα
n : n ∈ ω) is a probabilistic Rα-mac for

∆+
B (x̄ , ȳ).
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Corollary

Let B be a graph on {1, . . . , k + l}. Let A be the induced subgraph on
{k + 1, . . . , k + l}. Then (Ĝα

n : n ∈ ω) is a probabilistic Rα-mac for
∆+

B (x1 . . . xk ; y1 . . . yl), with measuring functions G 7→ m|G |δ⋆(B/A) with
m ∈ {0, 1, . . . ,K ⋆(B/A)}.

Proof.

We have A ⊆ R ⊆ B with R rigid over A and B safe over R.

If b̄ ̸|= ∆+
A (ȳ) then |∆+

B (Ĝ
|x̄ |
n , b̄)| = 0.

If b̄ |= ∆+
A (ȳ) we first count the number of extensions of b̄ to a copy

of R – with probability approaching 1, there are ≤ K (R/A) such
extensions for any such b̄. Note that “b̄ has m extensions to R” is
definable.

If b̄ has m extensions to R, then each of those extensions has
approximately nδ(B/R) extensions to B, so b̄ has in total

approximately mnδ(B/R) extensions to B. That is, |∆+
A (Ĝ

|x̄ |
n , b̄)| is

approximately mnδ(B/R).
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|x̄ |
n , b̄)| = 0.

If b̄ |= ∆+
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|x̄ |
n , b̄)| = 0.

If b̄ |= ∆+
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Now we go from ∆+
B (x̄ ȳ) to ∆B(x̄ ȳ).

Observe that ∆B(x̄ ȳ) is equivalent to ∆+
B (x̄ ȳ) ∧

∧
B′ ¬∆+

B′(x̄ ȳ),
where B ′ ranges over all graphs B ′ obtained by exactly one edge to
B. By inclusion-exclusion, we obtain

|∆B(x̄ , b̄)| = |∆+
B (x̄ , b̄)| −

∑
k

(−1)k
∑

B′∈B(k)

|∆+
B′(x̄ , b̄)|,

where B(k) is the collection of graphs obtained by adding k edges to
B

Two well-intentioned but incorrect arguments:

1 This sum is a linear combination of terms each approximately of the
form knγ for some k ∈ Z and γ ∈ R. Such a “polynomial” is
approximately equal to its leading term.

2 This sum is asymptotically equivalent to |∆+
B (x̄ , b̄)| – edges are rare,

and so almost all positive copies of B should be full copies of B (i.e. B
as an induced subgraph) – that is, |∆+

B′(x̄ , b̄)| = o(|∆+
B (x̄ , b̄)|)
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∧
B′ ¬∆+

B′(x̄ ȳ),
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1 This sum is a linear combination of terms each approximately of the
form knγ for some k ∈ Z and γ ∈ R. Such a “polynomial” is
approximately equal to its leading term.

2 This sum is asymptotically equivalent to |∆+
B (x̄ , b̄)| – edges are rare,

and so almost all positive copies of B should be full copies of B (i.e. B
as an induced subgraph)

Argument 1 is flawed because asymptotic behavior does not play well
with subtraction: consider n2 + 3 and n2 + ln n. Each is
asymptotically equal to nk for some k, but their difference is not.

If Argument 2 were sound, this would not be a problem. But we can
have δ⋆(B ′/A) = δ⋆(B/A), even though δ(B ′/A) ≤ δ(B/A)− α.

Sketch of problem and solution: if we only add edges to the rigid part
R of B over A, it is possible to have δ(B ′/R) = δ(B/R). In this case,
every extension of R ′ (the rigid part of B ′) to B ′ is already an
extension of R to B (since we are adding no new edges from R to the
safe part of B). Therefore in the inclusion-exclusion formula, when we
subtract this number of extensions, we are cancelling out an earlier
term in its entirety, not asymptotically as in the earlier bullet point.
(Board example)
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Sketch of problem and solution: if we only add edges to the rigid part
R of B over A, it is possible to have δ(B ′/R) = δ(B/R). In this case,
every extension of R ′ (the rigid part of B ′) to B ′ is already an
extension of R to B (since we are adding no new edges from R to the
safe part of B). Therefore in the inclusion-exclusion formula, when we
subtract this number of extensions, we are cancelling out an earlier
term in its entirety, not asymptotically as in the earlier bullet point.
(Board example)
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We now show how to find the cardinality of {a :
∧

i ∃z̄∆Bi
(a, b̄, z̄)}.

Note: by the theory Tα, it suffices to consider the case where each Bi

is rigid over the graph on a, b̄.

Given B1, . . . ,Bk as above, we can find A1, . . . ,Al such that for any
a, b̄,

∧
i ∃z̄∆Bi

(a, b̄, z̄) if and only if
∨

j ∃z̄∆Aj
(a, b̄, z̄). (Picture proof

on board)

For a given b̄, we wish to count the number of a such that
Ĝα
n |=

∨
j ∃z̄∆Aj

(a, b̄, z̄).

To do this, we enumerate every instance of a occuring in a copy of
some Aj over b̄.

By inclusion-exclusion principle, we add up all instances of a which
occur at least once, subtract the number of instances of a occuring
twice, add the number of instances of a occuring three times...
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Instances of a occurring at least once are given by the total number
of extensions of b̄ to some Ai .

Instances of a occuring at least twice are given by counting extensions
of b̄ to graphs C which can be written as a union as Ai ∪ Aj over ab̄,
counting once for every such union. And so on.

By rigidity, there is some K such that no ab̄ extends to a copy of C
where C can be written as a union of ≥ K instances of Ai ’s – since
the number of copies of ab̄ to any one Ai is (with probability -¿)
bounded by some Ki . So this process terminates!

We are left with

{a :
∧
i

∃z̄∆Bi
(a, b̄, z̄)}| =

K∑
k=1

(−1)k
∑

C∈Gphi

N(k ,C ) · |∆C (G
lC , b̄)|,

where N(k,C ) counts the number of unordered sets of embeddings
{ι1, . . . , ιk} of graphs in {A1, . . . ,Al} into C such that C is the union
of their images.
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To find the cardinality of
{a :

∧
i ∃z̄∆Bi

(a, b̄, z̄) ∧
∧

j ¬∃z̄∆Dj
(a, b̄, z̄)}, we appeal to

inclusion-exclusion again, as

|A ∩
l⋂

j=1

(A \ Bj)| = |A| −
∑
k

∑
i1<...<ik≤l

|A ∩
⋂
j

Bij |.

This expression is a Z-linear combination of numbers asymptotically
of the form na−bα. The two flawed arguments from the quantifier-free
case apply again, and the fix is similar though more complicated.

Briefly: we only care about counting graph extensions of b̄ to finitely
many graphs C . Consider the rigid parts RC of each such extension.
We can definably specify, for b̄, the number of copies to each RC , and
the ways in which these copies intersect.

For every possible such specification, we show, as in the quantifier-free
case, that when leading terms in the associated “polynomial” (

∑
knγ

for γ ∈ R) cancel, they cancel in their entirety, and the resulting
combination is still asymptotically equal to such a polynomial.

Alex Van Abel (Wesleyan University) Probabilistic R-Macs October 14 2023 – NERDS 24.0 26 / 27



To find the cardinality of
{a :

∧
i ∃z̄∆Bi

(a, b̄, z̄) ∧
∧

j ¬∃z̄∆Dj
(a, b̄, z̄)}, we appeal to

inclusion-exclusion again, as

|A ∩
l⋂

j=1

(A \ Bj)| = |A| −
∑
k

∑
i1<...<ik≤l

|A ∩
⋂
j

Bij |.

This expression is a Z-linear combination of numbers asymptotically
of the form na−bα. The two flawed arguments from the quantifier-free
case apply again, and the fix is similar though more complicated.

Briefly: we only care about counting graph extensions of b̄ to finitely
many graphs C . Consider the rigid parts RC of each such extension.
We can definably specify, for b̄, the number of copies to each RC , and
the ways in which these copies intersect.

For every possible such specification, we show, as in the quantifier-free
case, that when leading terms in the associated “polynomial” (

∑
knγ

for γ ∈ R) cancel, they cancel in their entirety, and the resulting
combination is still asymptotically equal to such a polynomial.

Alex Van Abel (Wesleyan University) Probabilistic R-Macs October 14 2023 – NERDS 24.0 26 / 27



To find the cardinality of
{a :

∧
i ∃z̄∆Bi

(a, b̄, z̄) ∧
∧

j ¬∃z̄∆Dj
(a, b̄, z̄)}, we appeal to

inclusion-exclusion again, as

|A ∩
l⋂

j=1

(A \ Bj)| = |A| −
∑
k

∑
i1<...<ik≤l

|A ∩
⋂
j

Bij |.

This expression is a Z-linear combination of numbers asymptotically
of the form na−bα. The two flawed arguments from the quantifier-free
case apply again, and the fix is similar though more complicated.

Briefly: we only care about counting graph extensions of b̄ to finitely
many graphs C . Consider the rigid parts RC of each such extension.
We can definably specify, for b̄, the number of copies to each RC , and
the ways in which these copies intersect.

For every possible such specification, we show, as in the quantifier-free
case, that when leading terms in the associated “polynomial” (

∑
knγ

for γ ∈ R) cancel, they cancel in their entirety, and the resulting
combination is still asymptotically equal to such a polynomial.

Alex Van Abel (Wesleyan University) Probabilistic R-Macs October 14 2023 – NERDS 24.0 26 / 27



To find the cardinality of
{a :

∧
i ∃z̄∆Bi

(a, b̄, z̄) ∧
∧

j ¬∃z̄∆Dj
(a, b̄, z̄)}, we appeal to

inclusion-exclusion again, as

|A ∩
l⋂

j=1

(A \ Bj)| = |A| −
∑
k

∑
i1<...<ik≤l

|A ∩
⋂
j

Bij |.

This expression is a Z-linear combination of numbers asymptotically
of the form na−bα. The two flawed arguments from the quantifier-free
case apply again, and the fix is similar though more complicated.

Briefly: we only care about counting graph extensions of b̄ to finitely
many graphs C . Consider the rigid parts RC of each such extension.
We can definably specify, for b̄, the number of copies to each RC , and
the ways in which these copies intersect.

For every possible such specification, we show, as in the quantifier-free
case, that when leading terms in the associated “polynomial” (

∑
knγ

for γ ∈ R) cancel, they cancel in their entirety, and the resulting
combination is still asymptotically equal to such a polynomial.

Alex Van Abel (Wesleyan University) Probabilistic R-Macs October 14 2023 – NERDS 24.0 26 / 27



References

S. Shelah & J. Spencer “Zero-One Laws for Sparse Random Graphs”
Journal of the American Mathematical Society, Vol. 1, No. 1 (1988)

Laskowski, M. “A simpler axiomatization of the Shelah-Spencer
almost sure theories: Israel Journal of Mathematics, Vol. 161 (2007)

Kleitman, D.J. & Rothschild, B.L. “Asymptotic Enumeration of
Partial Orders on a Finite Set” Transactions of the American
Mathematical Society, Vol. 205 (1975)

Kim, J.H. & Vu, V. H. “Concentration of Multivariate Polynomials
and Its Applications” Combinatorica, Vol. 20 (2000)

Alex Van Abel (Wesleyan University) Probabilistic R-Macs October 14 2023 – NERDS 24.0 27 / 27


