Probabilistic R-Macs

Alex Van Abel
Wesleyan University

October 142023 - NERDS 24.0
"Asymptotic class" is a family of concepts about finite structures which have restrictions on the cardinalities of definable sets. The first to be explicitly named was the one-dimensional asymptotic classes:
"Asymptotic class" is a family of concepts about finite structures which have restrictions on the cardinalities of definable sets. The first to be explicitly named was the one-dimensional asymptotic classes:

Definition (Macpherson \& Steinhorn 08)

A family ($M_{k}: k \in \omega$) of finite L-structures is a one-dimensional asymptotic class if for every L-formula $\varphi\left(x_{1}, \ldots, x_{n}, \bar{y}\right)$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$, pairs $\left(\mu_{1}, d_{1}\right), \ldots,\left(\mu_{r}, d_{r}\right) \in \mathbb{R} \times\{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that
"Asymptotic class" is a family of concepts about finite structures which have restrictions on the cardinalities of definable sets. The first to be explicitly named was the one-dimensional asymptotic classes:

Definition (Macpherson \& Steinhorn 08)

A family ($M_{k}: k \in \omega$) of finite L-structures is a one-dimensional asymptotic class if for every L-formula $\varphi\left(x_{1}, \ldots, x_{n}, \bar{y}\right)$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$, pairs $\left(\mu_{1}, d_{1}\right), \ldots,\left(\mu_{r}, d_{r}\right) \in \mathbb{R} \times\{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that

- the sets $\pi_{1}\left(M_{k}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(M_{k}^{|\bar{y}|}\right)$ partition $M_{k}^{|\bar{y}|}$ for each (sufficiently large) k, and
"Asymptotic class" is a family of concepts about finite structures which have restrictions on the cardinalities of definable sets. The first to be explicitly named was the one-dimensional asymptotic classes:

Definition (Macpherson \& Steinhorn 08)

A family ($M_{k}: k \in \omega$) of finite L-structures is a one-dimensional asymptotic class if for every L-formula $\varphi\left(x_{1}, \ldots, x_{n}, \bar{y}\right)$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$, pairs $\left(\mu_{1}, d_{1}\right), \ldots,\left(\mu_{r}, d_{r}\right) \in \mathbb{R} \times\{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that

- the sets $\pi_{1}\left(M_{k}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(M_{k}^{|\bar{y}|}\right)$ partition $M_{k}^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $\bar{b} \in \pi_{i}\left(M_{k}^{|\bar{y}|}\right)$ then $\| \varphi\left(M_{k}^{n}, \bar{b}\right)-\left.\mu_{i}\left|M_{k}\right|^{d_{i}}|<C| M\right|^{d_{i}-1 / 2}$.
"Asymptotic class" is a family of concepts about finite structures which have restrictions on the cardinalities of definable sets. The first to be explicitly named was the one-dimensional asymptotic classes:

Definition (Macpherson \& Steinhorn 08)

A family ($M_{k}: k \in \omega$) of finite L-structures is a one-dimensional asymptotic class if for every L-formula $\varphi\left(x_{1}, \ldots, x_{n}, \bar{y}\right)$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$, pairs $\left(\mu_{1}, d_{1}\right), \ldots,\left(\mu_{r}, d_{r}\right) \in \mathbb{R} \times\{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that

- the sets $\pi_{1}\left(M_{k}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(M_{k}^{|\bar{y}|}\right)$ partition $M_{k}^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $\bar{b} \in \pi_{i}\left(M_{k}^{|\bar{y}|}\right)$ then $\| \varphi\left(M_{k}^{n}, \bar{b}\right)-\left.\mu_{i}\left|M_{k}\right|^{d_{i}}|<C| M\right|^{d_{i}-1 / 2}$.

Theorem (Chatzidakis, Van den Dries \& Macintrye 92)

The class of finite fields is a one-dimensional asymptotic class.

Definition (Anscombe, Macpherson, Steinhorn, Wolf 16)

Let R be a set of functions $h:\{M: M$ is an L-structure $\} \rightarrow \mathbb{R}$. A sequence ($M_{k}: k \in \omega$) of L-structures is an R-multidimensional asymptotic class (R-mac) if for every L-formula $\varphi(\bar{x}, \bar{y})$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$ and functions $h_{1}, \ldots, h_{r} \in R$ such that

Definition (Anscombe, Macpherson, Steinhorn, Wolf 16)

Let R be a set of functions $h:\{M: M$ is an L-structure $\} \rightarrow \mathbb{R}$. A sequence ($M_{k}: k \in \omega$) of L-structures is an R-multidimensional asymptotic class (R-mac) if for every L-formula $\varphi(\bar{x}, \bar{y})$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$ and functions $h_{1}, \ldots, h_{r} \in R$ such that

- the sets $\pi_{1}\left(M_{k}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(M_{k}^{|\bar{y}|}\right)$ partition $M_{k}^{|\bar{y}|}$ for each (sufficiently large) k, and

Definition (Anscombe, Macpherson, Steinhorn, Wolf 16)

Let R be a set of functions $h:\{M: M$ is an L-structure $\} \rightarrow \mathbb{R}$. A sequence ($M_{k}: k \in \omega$) of L-structures is an R-multidimensional asymptotic class (R-mac) if for every L-formula $\varphi(\bar{x}, \bar{y})$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$ and functions $h_{1}, \ldots, h_{r} \in R$ such that

- the sets $\pi_{1}\left(M_{k}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(M_{k}^{|\bar{y}|}\right)$ partition $M_{k}^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $\bar{b} \in \pi_{i}\left(M_{k}^{|\bar{Y}|}\right)$ then $\left|\left|\varphi\left(M_{k}^{n}, \bar{b}\right)-h_{i}\left(M_{k}\right)\right|=o\left(h_{i}\left(M_{k}\right)\right)\right.$.

Definition (Anscombe, Macpherson, Steinhorn, Wolf 16)

Let R be a set of functions $h:\{M: M$ is an L-structure $\} \rightarrow \mathbb{R}$. A sequence ($M_{k}: k \in \omega$) of L-structures is an R-multidimensional asymptotic class (R-mac) if for every L-formula $\varphi(\bar{x}, \bar{y})$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$ and functions $h_{1}, \ldots, h_{r} \in R$ such that

- the sets $\pi_{1}\left(M_{k}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(M_{k}^{|\bar{y}|}\right)$ partition $M_{k}^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $\bar{b} \in \pi_{i}\left(M_{k}^{|\bar{Y}|}\right)$ then $\left|\left|\varphi\left(M_{k}^{n}, \bar{b}\right)-h_{i}\left(M_{k}\right)\right|=o\left(h_{i}\left(M_{k}\right)\right)\right.$.

A one-dimensional asymptotic class is an R-mac where R is the set of functions $\left\{M \mapsto \mu|M|^{d}: \mu \in \mathbb{R}, d \in \mathbb{N}\right\}$.

Definition (Anscombe, Macpherson, Steinhorn, Wolf 16)

Let R be a set of functions $h:\{M: M$ is an L-structure $\} \rightarrow \mathbb{R}$. A sequence ($M_{k}: k \in \omega$) of L-structures is an R-multidimensional asymptotic class (R-mac) if for every L-formula $\varphi(\bar{x}, \bar{y})$, there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$ and functions $h_{1}, \ldots, h_{r} \in R$ such that

- the sets $\pi_{1}\left(M_{k}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(M_{k}^{|\bar{y}|}\right)$ partition $M_{k}^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $\bar{b} \in \pi_{i}\left(M_{k}^{|\bar{Y}|}\right)$ then $\left|\left|\varphi\left(M_{k}^{n}, \bar{b}\right)-h_{i}\left(M_{k}\right)\right|=o\left(h_{i}\left(M_{k}\right)\right)\right.$.

A one-dimensional asymptotic class is an R-mac where R is the set of functions $\left\{M \mapsto \mu|M|^{d}: \mu \in \mathbb{R}, d \in \mathbb{N}\right\}$.

An N-dimensional asymptotic class (introduced by Elwes) is an R-mac where R is the set of functions $\left\{M \mapsto \mu|M|^{d / N}: \mu \in \mathbb{R}, d \in \mathbb{N}\right\}$.

Definition

A random L-structure is formally a probability distribution on the set of all L-structures on a fixed universe.

Definition

A random L-structure is formally a probability distribution on the set of all L-structures on a fixed universe.

In this talk, all random structures considered will be finite - so there is no care we need to take with measurability issues, and we may consider the probability of any property of the random structure \hat{M}.

Definition

Let $n \in \omega$ and $p \in[0,1]$. The Erdős-Rényi random graph $\hat{G}(n, p)$ is the random graph on n vertices formed by letting each of the $\binom{n}{2}$ possible edges appear independently with probability p.

Definition

Let $n \in \omega$ and $p \in[0,1]$. The Erdős-Rényi random graph $\hat{G}(n, p)$ is the random graph on n vertices formed by letting each of the $\binom{n}{2}$ possible edges appear independently with probability p.

Definition

Let $\alpha \in(0,1)$. The Spencer-Shelah random graph sequence with parameter α is the sequence $\left(\hat{G}_{n}^{\alpha}:=\hat{G}\left(n, n^{-\alpha}\right): n \in \omega\right)$.

Definition

Let $\left(M_{n}: n \in \omega\right)$ be a sequence of random L-structures. The zero-one theory of the sequence is the set of L-sentences

$$
\left\{\phi: \lim _{n \rightarrow \infty} \mathbb{P}\left(M_{n} \models \phi\right)=1\right\} .
$$

Definition

Let $\left(M_{n}: n \in \omega\right)$ be a sequence of random L-structures.
The zero-one theory of the sequence is the set of L-sentences

$$
\left\{\phi: \lim _{n \rightarrow \infty} \mathbb{P}\left(M_{n} \models \phi\right)=1\right\} .
$$

Theorem (Fagin)

For a fixed $p \in(0,1)$, the sequence $(\hat{G}(n, p): n \in \omega)$ has the theory of the Rado random graph as its zero-one theory.

Definition

Let $\left(M_{n}: n \in \omega\right)$ be a sequence of random L-structures.
The zero-one theory of the sequence is the set of L-sentences

$$
\left\{\phi: \lim _{n \rightarrow \infty} \mathbb{P}\left(M_{n} \models \phi\right)=1\right\}
$$

Theorem (Fagin)

For a fixed $p \in(0,1)$, the sequence $(\hat{G}(n, p): n \in \omega)$ has the theory of the Rado random graph as its zero-one theory.

Theorem (Spencer \& Shelah)

If α is irrational, the Spencer-Shelah random graph sequence with parameter α has a complete zero-one theory T_{α}.

Definition (V.)

Let R be a set of functions from $\{M: M$ is an L-structure $\}$ to \mathbb{R}. Let $\varphi(\bar{x} ; \bar{y})$ be an L-formula.
A sequence ($\hat{M}_{n}: n \in \omega$) of random L-structures is a probabilistic R-mac for φ if there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$ and functions $h_{1}, \ldots, h_{r} \in R$ such that for every $\epsilon>0$, the probabilities of the following statements go to 1 as n goes to infinity:

- the sets $\pi_{1}\left(M_{n}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(\hat{M}_{n}^{|\bar{y}|}\right)$ partition $\hat{M}_{n}^{|\bar{y}|}$, and
- if $\bar{b} \in \pi_{i}\left(\hat{M}_{n}^{|\bar{y}|}\right)$ then $(1-\epsilon) h_{i}\left(\hat{M}_{n}\right)<\left|\varphi\left(\hat{M}_{n}^{|\bar{X}|}, \bar{b}\right)\right|<(1+\epsilon) h_{i}\left(\hat{M}_{n}\right)$ $\left(\hat{M}_{n}: n \in \omega\right)$ is a probabilistic R-mac if it is a probabilistic R-mac for every formula $\varphi(\bar{x}, \bar{y})$.

Definition (V.)

Let R be a set of functions from $\{M: M$ is an L-structure $\}$ to \mathbb{R}. Let $\varphi(\bar{x} ; \bar{y})$ be an L-formula.
A sequence ($\hat{M}_{n}: n \in \omega$) of random L-structures is a probabilistic R-mac for φ if there are L-formulas $\pi_{1}(\bar{y}), \ldots, \pi_{r}(\bar{y})$ and functions $h_{1}, \ldots, h_{r} \in R$ such that for every $\epsilon>0$, the probabilities of the following statements go to 1 as n goes to infinity:

- the sets $\pi_{1}\left(M_{n}^{|\bar{y}|}\right), \ldots, \pi_{r}\left(\hat{M}_{n}^{|\bar{y}|}\right)$ partition $\hat{M}_{n}^{|\bar{y}|}$, and
- if $\bar{b} \in \pi_{i}\left(\hat{M}_{n}^{|\bar{y}|}\right)$ then $(1-\epsilon) h_{i}\left(\hat{M}_{n}\right)<\left|\varphi\left(\hat{M}_{n}^{|\bar{X}|}, \bar{b}\right)\right|<(1+\epsilon) h_{i}\left(\hat{M}_{n}\right)$ ($\hat{M}_{n}: n \in \omega$) is a probabilistic R-mac if it is a probabilistic R-mac for every formula $\varphi(\bar{x}, \bar{y})$.

Note: The functions h_{i} are defined on (deterministic) L-structures; the expression $h_{i}\left(\hat{M}_{n}\right)$ is a real-valued random variable.

Proposition

Let $\left(\hat{M}_{n}: n \in \omega\right)$ be a probabilistic R-mac. For each n, let $X_{n, 1}, X_{n, 2}, \ldots$ be a sequence of statements (events) about the structure \hat{M}_{n}. Suppose that for each k, we have

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(\hat{M}_{n} \text { satisfies } X_{n, 1}, X_{n, 2}, \ldots, \text { and } X_{n, k}\right)>0
$$

Then we can find an R-mac $\left(M_{1}, M_{2}, \ldots\right)$ such that for every k, M_{n} satisfies $X_{n, k}$ for cofinitely many n.

Proposition

Let $\left(\hat{M}_{n}: n \in \omega\right)$ be a probabilistic R-mac. For each n, let $X_{n, 1}, X_{n, 2}, \ldots$ be a sequence of statements (events) about the structure \hat{M}_{n}. Suppose that for each k, we have

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(\hat{M}_{n} \text { satisfies } X_{n, 1}, X_{n, 2}, \ldots, \text { and } X_{n, k}\right)>0
$$

Then we can find an R-mac $\left(M_{1}, M_{2}, \ldots\right)$ such that for every k, M_{n} satisfies $X_{n, k}$ for cofinitely many n.

Note

For example, we can ensure that the zero-one theory of the \hat{M}_{n} is (contained in) the limit theory of the M_{n}.

Proposition

To show that a sequence ($\hat{M}_{n}: n \in \omega$) of random structures is a probabilistic R-mac, it suffices to show that it is a probabilistic R-mac for every formula $\varphi\left(x_{1} ; \bar{y}\right)$ with a single object variable (provided that R is asymptotically closed under addition and multiplication).

Proposition

To show that a sequence ($\hat{M}_{n}: n \in \omega$) of random structures is a probabilistic R-mac, it suffices to show that it is a probabilistic R-mac for every formula $\varphi\left(x_{1} ; \bar{y}\right)$ with a single object variable (provided that R is asymptotically closed under addition and multiplication).

Proof.

Routine fiber-decomposition proof. To show R is a probabilistic R-mac for $\varphi\left(x_{1} \ldots x_{k} ; \bar{y}\right)$, re-contextualize the variables as $\varphi\left(x_{1} ; x_{2} \ldots x_{k} \bar{y}\right)$ and obtain estimates for $\left|\varphi\left(\hat{M}_{n} ; a_{2} \ldots a_{k} \bar{b}\right)\right|$, definably for $\left.a_{2} \ldots a_{k} \bar{b}\right)$ by formulas $\pi_{i}\left(x_{2} \ldots x_{k} \bar{y}\right)$. By induction, obtain cardinality bounds for $\left|\pi_{i}\left(\hat{M}_{n}^{k-1}, \bar{b}\right)\right|$, and use these to bound the size of $\left|\varphi\left(\hat{M}_{n}^{k}, \bar{b}\right)\right|$.

If \mathcal{C} is a class of (deterministic) finite structures, we say \mathcal{C} is a probabilistic R-mac if ($\left.\hat{M}_{n}: n \in \omega\right)$ is, where \hat{M}_{n} is the uniform distribution on all structures in \mathcal{C} with universe $\{1, \ldots, n\}$.

If \mathcal{C} is a class of (deterministic) finite structures, we say \mathcal{C} is a probabilistic R-mac if ($\hat{M}_{n}: n \in \omega$) is, where \hat{M}_{n} is the uniform distribution on all structures in \mathcal{C} with universe $\{1, \ldots, n\}$.

Proposition

The class of all finite graphs is a probabilistic R-mac, where R is the set $\left\{M \mapsto \mu|M|^{d}: \mu \in \mathbb{R}, d \in \mathbb{N}\right\}$ (a probabilistic one-dimensional asymptotic class).

Proof Sketch

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence $(\hat{G}(n, 1 / 2): n \in \omega)$.

Proof Sketch

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence $(\hat{G}(n, 1 / 2): n \in \omega)$.
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.

Proof Sketch

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence $(\hat{G}(n, 1 / 2): n \in \omega)$.
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.
- By quantifier elimination and the one-variable lemma, it suffices to check the R-pmac condition for formulas of the form $\phi(x, \bar{y})=\bigwedge_{i} x E y_{i} \wedge \bigwedge_{j} \neg x E y_{j} \wedge \rho(x, \bar{y})$, where $\rho(x, \bar{y})$ expresses that all elements are distinct.

Proof Sketch

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence $(\hat{G}(n, 1 / 2): n \in \omega)$.
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.
- By quantifier elimination and the one-variable lemma, it suffices to check the R-pmac condition for formulas of the form $\phi(x, \bar{y})=\bigwedge_{i} x E y_{i} \wedge \bigwedge_{j} \neg x E y_{j} \wedge \rho(x, \bar{y})$, where $\rho(x, \bar{y})$ expresses that all elements are distinct.
- That is, we wish to obtain estimates for $\left|\left\{a \in \hat{G}_{n}: \hat{G}_{n} \models \phi(a, \bar{b})\right\}\right|$ for $\bar{b} \in \hat{G}_{n}$.

Proof Sketch

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence $(\hat{G}(n, 1 / 2): n \in \omega)$.
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.
- By quantifier elimination and the one-variable lemma, it suffices to check the R-pmac condition for formulas of the form $\phi(x, \bar{y})=\bigwedge_{i} x E y_{i} \wedge \bigwedge_{j} \neg x E y_{j} \wedge \rho(x, \bar{y})$, where $\rho(x, \bar{y})$ expresses that all elements are distinct.
- That is, we wish to obtain estimates for $\left|\left\{a \in \hat{G}_{n}: \hat{G}_{n} \models \phi(a, \bar{b})\right\}\right|$ for $\bar{b} \in \hat{G}_{n}$.
- Assuming that all b_{i} are distinct, the probability that a given $a \notin \bar{b}$ satisfies $\phi(a, \bar{b})$ is $2^{-|\bar{y}|}$. Furthermore, these events are mutually independent for different a.

Hoeffding's Inequality (Bernoulli Version)

Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables. Let $S_{n}=\sum_{i \leq n} X_{i}$. Then $\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geq t\right) \leq e^{-2 t^{2} / n}$.

Hoeffding's Inequality (Bernoulli Version)

Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables. Let $S_{n}=\sum_{i \leq n} X_{i}$. Then $\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geq t\right) \leq e^{-2 t^{2} / n}$.

Proof Sketch Cont'd

- $\left|\left\{a \in \hat{G}_{n}: a \bar{b} \in \phi\left(\hat{G}_{n}^{1+|\bar{y}|}\right)\right\}\right|$ is a sum of Bernoulli RV's as in Hoeffding's Inequality, with expectation $(n-|\bar{y}|) \cdot 2^{-k}=2^{-k} n+c$

Hoeffding's Inequality (Bernoulli Version)

Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables. Let $S_{n}=\sum_{i \leq n} X_{i}$. Then $\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geq t\right) \leq e^{-2 t^{2} / n}$.

Proof Sketch Cont'd

- |\{a $\left.\hat{G}_{n}: a \bar{b} \in \phi\left(\hat{G}_{n}^{1+|\bar{y}|}\right)\right\} \mid$ is a sum of Bernoulli RV's as in Hoeffding's Inequality, with expectation $(n-|\bar{y}|) \cdot 2^{-k}=2^{-k} n+c$
- For a given ϵ, the probability that this number is not between $(1-\epsilon) 2^{-k} n$ and $(1+\epsilon) 2^{-k} n$ is $\leq \exp \left(-2\left(\epsilon 2^{-k} n\right)^{2} / n\right)=\exp (-\eta n)$ for $\eta=2^{-2 k-1} \epsilon$. This goes to 0 as $n \rightarrow \infty$.

Proposition

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proposition

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

- We rely on the following theorem of Kleitman \& Rothschild (75):

Proposition

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

- We rely on the following theorem of Kleitman \& Rothschild (75):
- Asymptotically most finite partial orders on $\{1, \ldots, n\}$ have three layers in their Hasse diagram, with middle layer of size approximately $n / 2$ and top and bottom layers approximately $n / 4$.

Proposition

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

- We rely on the following theorem of Kleitman \& Rothschild (75):
- Asymptotically most finite partial orders on $\{1, \ldots, n\}$ have three layers in their Hasse diagram, with middle layer of size approximately $n / 2$ and top and bottom layers approximately $n / 4$.
- The uniform distribution on these partial orders can be modeled as an independent-coin-flip random structure, similar to the random graph.

Proposition

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

- We rely on the following theorem of Kleitman \& Rothschild (75):
- Asymptotically most finite partial orders on $\{1, \ldots, n\}$ have three layers in their Hasse diagram, with middle layer of size approximately $n / 2$ and top and bottom layers approximately $n / 4$.
- The uniform distribution on these partial orders can be modeled as an independent-coin-flip random structure, similar to the random graph.
- Therefore single-variable definable sets in the random partial order on $\{1, \ldots, n\}$ have cardinality approximately $2^{-k} n$ for some k, by the same argument as in the random graph.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic $R^{\alpha}-m a c$, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic $R^{\alpha}-m a c$, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch

- We rely on the following quantifier elimination result from Laskowski.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic R^{α}-mac, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch

- We rely on the following quantifier elimination result from Laskowski.
- Notation: For a graph B on $\{1, \ldots, k\}$, let $\Delta_{B}\left(v_{1} \ldots v_{k}\right)$ be the formula $\bigwedge_{i E j} v_{i} E v_{j} \wedge \bigwedge_{\neg i E j} \neg v_{i} E v_{j}$. Let $\Delta_{B}^{+}\left(v_{1} \ldots v_{k}\right)$ be $\bigwedge_{i E j} v_{i} E v_{j}$.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic R^{α}-mac, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch

- We rely on the following quantifier elimination result from Laskowski.
- Notation: For a graph B on $\{1, \ldots, k\}$, let $\Delta_{B}\left(v_{1} \ldots v_{k}\right)$ be the formula $\bigwedge_{i E j} v_{i} E v_{j} \wedge \bigwedge_{\neg i E j} \neg v_{i} E v_{j}$. Let $\Delta_{B}^{+}\left(v_{1} \ldots v_{k}\right)$ be $\bigwedge_{i E j} v_{i} E v_{j}$.

Theorem (Laskowski 07)

The theory T^{α} admits quantifier elimination down to formulas of the form $\phi(\bar{x}):=\exists \bar{z} \Delta_{B}(\bar{x} \bar{z})$.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic R^{α}-mac, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch

- We rely on the following quantifier elimination result from Laskowski.
- Notation: For a graph B on $\{1, \ldots, k\}$, let $\Delta_{B}\left(v_{1} \ldots v_{k}\right)$ be the formula $\bigwedge_{i E j} v_{i} E v_{j} \wedge \bigwedge_{\neg i E_{j}} \neg v_{i} E v_{j}$. Let $\Delta_{B}^{+}\left(v_{1} \ldots v_{k}\right)$ be $\bigwedge_{i E j} v_{i} E v_{j}$.

Theorem (Laskowski 07)

The theory T^{α} admits quantifier elimination down to formulas of the form $\phi(\bar{x}):=\exists \bar{z} \Delta_{B}(\bar{x} \bar{z})$.

Proof Sketch Continued

- Observe: complete quantifier-free formulas are formulas of the above form for $|\bar{z}|=0$.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic R^{α}-mac, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch Continued

- By quantifier elimination, it suffices to show that $\left(\hat{G}_{n}^{\alpha}: n \in \omega\right)$ is an R^{α}-pmac for conjunctions of formulas of the form $\phi(x, \bar{y}):=\exists \bar{z} \Delta_{B}(x, \bar{y}, \bar{z})$ and their negations.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic R^{α}-mac, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch Continued

- By quantifier elimination, it suffices to show that $\left(\hat{G}_{n}^{\alpha}: n \in \omega\right)$ is an R^{α}-pmac for conjunctions of formulas of the form $\phi(x, \bar{y}):=\exists \bar{z} \Delta_{B}(x, \bar{y}, \bar{z})$ and their negations.
- We first show asymptoticity results for quantifier-free formulas (i.e. the case $|\bar{z}|=0$)

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic R^{α}-mac, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch Continued

- By quantifier elimination, it suffices to show that $\left(\hat{G}_{n}^{\alpha}: n \in \omega\right)$ is an R^{α}-pmac for conjunctions of formulas of the form $\phi(x, \bar{y}):=\exists \bar{z} \Delta_{B}(x, \bar{y}, \bar{z})$ and their negations.
- We first show asymptoticity results for quantifier-free formulas (i.e. the case $|\bar{z}|=0$)
- Given $\bar{b} \in \hat{G}_{n}^{\alpha}$, we show how to write the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$ as a linear combination (possibly with negative coefficients) of cardinalities $\left|\left\{\bar{c}: \Delta_{C}(\bar{b}, \bar{c})\right\}\right|$ as C ranges over finitely many graphs.

Theorem

For irrational $\alpha \in(0,1)$, the Spencer-Shelah random graph sequence is a probabilistic R^{α}-mac, where R^{α} is the set of functions $\left\{M \mapsto k|M|^{a-b \alpha}: k, a, b \in \mathbb{N}\right\}$.

Proof Sketch Continued

- By quantifier elimination, it suffices to show that $\left(\hat{G}_{n}^{\alpha}: n \in \omega\right)$ is an R^{α}-pmac for conjunctions of formulas of the form $\phi(x, \bar{y}):=\exists \bar{z} \Delta_{B}(x, \bar{y}, \bar{z})$ and their negations.
- We first show asymptoticity results for quantifier-free formulas (i.e. the case $|\bar{z}|=0$)
- Given $\bar{b} \in \hat{G}_{n}^{\alpha}$, we show how to write the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$ as a linear combination (possibly with negative coefficients) of cardinalities $\left|\left\{\bar{c}: \Delta_{C}(\bar{b}, \bar{c})\right\}\right|$ as C ranges over finitely many graphs.
- We then sketch how to deal with including conjuncts of the form $\neg \exists \bar{z} \Delta_{B}(x, \bar{b}, \bar{z})$.

Definition

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B / A)$ is the quantity $v-e \alpha$, where v is the number of vertices in $B \backslash A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B / A)$ is the quantity $v-e \alpha$, where v is the number of vertices in $B \backslash A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs.
We say that B is safe over A if for every $A \subset C \subseteq B \subseteq, \delta(C / A)>0$.
We say that B is rigid over A if for every $A \subseteq C \subset B, \delta(B / C)<0$.

Definition

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B / A)$ is the quantity $v-e \alpha$, where v is the number of vertices in $B \backslash A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs.
We say that B is safe over A if for every $A \subset C \subseteq B \subseteq, \delta(C / A)>0$.
We say that B is rigid over A if for every $A \subseteq C \subset B, \delta(B / C)<0$.
T^{α} implies the following sentences about the graph G

Definition

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B / A)$ is the quantity $v-e \alpha$, where v is the number of vertices in $B \backslash A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs.
We say that B is safe over A if for every $A \subset C \subseteq B \subseteq, \delta(C / A)>0$.
We say that B is rigid over A if for every $A \subseteq C \subset B, \delta(B / C)<0$.
T^{α} implies the following sentences about the graph G

- If $\delta(A / \emptyset)<0$, then G contains no copy of A

Definition

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B / A)$ is the quantity $v-e \alpha$, where v is the number of vertices in $B \backslash A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs.
We say that B is safe over A if for every $A \subset C \subseteq B \subseteq, \delta(C / A)>0$.
We say that B is rigid over A if for every $A \subseteq C \subset B, \delta(B / C)<0$.
T^{α} implies the following sentences about the graph G

- If $\delta(A / \emptyset)<0$, then G contains no copy of A
- If $A \subseteq B$ is a safe extension, then every copy of A extends to a copy of B.

Definition

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B / A)$ is the quantity $v-e \alpha$, where v is the number of vertices in $B \backslash A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs.
We say that B is safe over A if for every $A \subset C \subseteq B \subseteq, \delta(C / A)>0$.
We say that B is rigid over A if for every $A \subseteq C \subset B, \delta(B / C)<0$.
T^{α} implies the following sentences about the graph G

- If $\delta(A / \emptyset)<0$, then G contains no copy of A
- If $A \subseteq B$ is a safe extension, then every copy of A extends to a copy of B.
- If $A \subseteq B$ is a rigid extension, then every copy of A extends to at most $K(B / A)$ copies of B (for some fixed number $K(B / A)$.

Proposition (Spencer \& Shelah)

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^{+}\left(G_{n}^{\prime}\right)\left(\bar{b} \in \Delta\left(G_{n}^{\prime}\right)\right)$, $\mathbb{E}\left[\left|\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)\right|\right] \approx n^{\delta(B / A)}\left(\approx \mathbb{E}\left[\left|\Delta_{B}\left(G_{n}^{k}, \bar{b}\right)\right|\right]\right)$.

Proposition (Spencer \& Shelah)

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^{+}\left(G_{n}^{\prime}\right)\left(\bar{b} \in \Delta\left(G_{n}^{\prime}\right)\right)$, $\mathbb{E}\left[\left|\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)\right|\right] \approx n^{\delta(B / A)}\left(\approx \mathbb{E}\left[\left|\Delta_{B}\left(G_{n}^{k}, \bar{b}\right)\right|\right]\right)$.

Proof.

There are $(n-I)(n-I-1) \ldots(n-I-(k-1)) \approx n^{k}$ extensions of \bar{b} to $(k+l)$-tuples $\bar{a} \bar{b}$. For any such $(k+l)$-tuple to be an element of $\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)$, we need each of the e edges of B to occur, where e is the number in $\delta(B / A)=v-e \alpha$. The probability that this happens is $\left(n^{-\alpha}\right)^{e}=n^{-e \alpha}$. By linearity of expectation, the expected number of elements in $\Delta^{+}\left(G_{n}^{l}\right)$ is $\approx n^{k} \cdot n^{-e \alpha}=n^{k-e \alpha}=n^{\delta(B / A)}$.
For $\delta_{B}\left(G_{n}^{k}, \bar{b}\right)$, we note that $\bar{a} \in \delta_{B}\left(G_{n}^{k}, \bar{b}\right)$ iff $\bar{a} \in \Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)$ and $\bar{a} \notin \Delta_{B^{\prime}}^{+}\left(G_{n}^{k}, \bar{b}\right)$ for any graph B^{\prime} for which B is a proper spanning subgraph, and for any such $B^{\prime}, \delta\left(B^{\prime} / A\right) \leq \delta(B / A)-\alpha$.

Proposition (Spencer \& Shelah)

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^{+}\left(G_{n}^{\prime}\right)\left(\bar{b} \in \Delta\left(G_{n}^{\prime}\right)\right)$, $\mathbb{E}\left[\left|\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)\right|\right] \approx n^{\delta(B / A)}\left(\approx \mathbb{E}\left[\left|\Delta_{B}\left(G_{n}^{k}, \bar{b}\right)\right|\right]\right)$.

However, this is different from saying that the actual number of extensions of \bar{b} is asymptotically equal to $n^{\delta(B / A)}$. This is not generally the case: if B is not safe over A, then most copies of A do not extend to B, even though the expected number of copies is positive.

Proposition (Spencer \& Shelah)

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^{+}\left(G_{n}^{\prime}\right)\left(\bar{b} \in \Delta\left(G_{n}^{\prime}\right)\right)$, $\mathbb{E}\left[\left|\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)\right|\right] \approx n^{\delta(B / A)}\left(\approx \mathbb{E}\left[\left|\Delta_{B}\left(G_{n}^{k}, \bar{b}\right)\right|\right]\right)$.

However, this is different from saying that the actual number of extensions of \bar{b} is asymptotically equal to $n^{\delta(B / A)}$. This is not generally the case: if B is not safe over A, then most copies of A do not extend to B, even though the expected number of copies is positive.

On the other hand...

Theorem (Kim \& Vu (2000))

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$ and let A be the subgraph on $\{k+1, \ldots, k+I\}$. Suppose that B is safe over A. Then there is a positive constant $\epsilon>0$ such that the probability of the statement for all $\bar{b} \in \Delta_{A}^{+}\left(G_{n}^{\prime}\right), n^{\delta(B / A)} \cdot\left(1-n^{-\epsilon}\right)<\left|\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)\right|<n^{\delta(B / A)} \cdot\left(1+n^{-\epsilon}\right)$ goes to 1 as n goes to ∞.

Theorem (Kim \& Vu (2000))

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$ and let A be the subgraph on $\{k+1, \ldots, k+I\}$. Suppose that B is safe over A. Then there is a positive constant $\epsilon>0$ such that the probability of the statement for all $\bar{b} \in \Delta_{A}^{+}\left(G_{n}^{\prime}\right), n^{\delta(B / A)} \cdot\left(1-n^{-\epsilon}\right)<\left|\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)\right|<n^{\delta(B / A)} \cdot\left(1+n^{-\epsilon}\right)$ goes to 1 as n goes to ∞.

Corollary

($\hat{G}_{n}^{\alpha}: n \in \omega$) is a probabilistic R^{α}-mac for the formula $\Delta_{B}^{+}(\bar{x} ; \bar{y})$, with measuring functions $G \mapsto 0$ and $h: G \mapsto|G|^{B / A}$.

Theorem (Kim \& Vu (2000))

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$ and let A be the subgraph on $\{k+1, \ldots, k+I\}$. Suppose that B is safe over A. Then there is a positive constant $\epsilon>0$ such that the probability of the statement for all $\bar{b} \in \Delta_{A}^{+}\left(G_{n}^{\prime}\right), n^{\delta(B / A)} \cdot\left(1-n^{-\epsilon}\right)<\left|\Delta_{B}^{+}\left(G_{n}^{k}, \bar{b}\right)\right|<n^{\delta(B / A)} \cdot\left(1+n^{-\epsilon}\right)$ goes to 1 as n goes to ∞.

Corollary

($\hat{G}_{n}^{\alpha}: n \in \omega$) is a probabilistic R^{α}-mac for the formula $\Delta_{B}^{+}(\bar{x} ; \bar{y})$, with measuring functions $G \mapsto 0$ and $h: G \mapsto|G|^{B / A}$.

Proof.

For every ϵ, with probability approaching 1 : if $\hat{G}_{n} \models \Delta_{A}^{+}(\bar{b})$ then $(1-\epsilon) h\left(\hat{G}_{n}^{\alpha}\right)<\left|\Delta_{B}\left(\left(\hat{G}_{n}^{\alpha}\right)^{|\bar{x}|}, \bar{b}\right)\right|<(1+\epsilon) h\left(\hat{G}_{n}^{\alpha}\right)$. If $\hat{G}_{n} \mid \neq \Delta_{A}^{+}(\bar{b})$ then $\left|\Delta_{B}\left(\left(\hat{G}_{n}^{\alpha}\right)^{|\bar{x}|}, \bar{b}\right)\right|=0$.

It is relatively easy to remove the restriction that B is safe.

It is relatively easy to remove the restriction that B is safe.

It is relatively easy to remove the restriction that B is safe.

Proposition

Let $A \subseteq B$ be a graph extension. Then there is a unique intermediate subgraph $A \subseteq r s(A, B) \subseteq B$ such that $r s(A, B)$ is rigid over A and B is safe over $r s(A, B)$.

It is relatively easy to remove the restriction that B is safe.

Proposition

Let $A \subseteq B$ be a graph extension. Then there is a unique intermediate subgraph $A \subseteq r s(A, B) \subseteq B$ such that $r s(A, B)$ is rigid over A and B is safe over $r s(A, B)$.

Definition

Define $\delta^{\star}(B / A)$ to be $\delta(B / R)$, where $R=r s(A, B)$. Define $K^{\star}(B / A)$ to be $K(R / A)$ (the maximum number of extensions of a copy of A to a copy of R in T^{α})

It is relatively easy to remove the restriction that B is safe.

Proposition

Let $A \subseteq B$ be a graph extension. Then there is a unique intermediate subgraph $A \subseteq r s(A, B) \subseteq B$ such that $r s(A, B)$ is rigid over A and B is safe over $r s(A, B)$.

Definition

Define $\delta^{\star}(B / A)$ to be $\delta(B / R)$, where $R=r s(A, B)$. Define $K^{\star}(B / A)$ to be $K(R / A)$ (the maximum number of extensions of a copy of A to a copy of R in T^{α})

Corollary

Let B be a graph. Then ($\hat{G}_{n}^{\alpha}: n \in \omega$) is a probabilistic R^{α}-mac for $\Delta_{B}^{+}(\bar{x}, \bar{y})$.

Corollary

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then ($\hat{G}_{n}^{\alpha}: n \in \omega$) is a probabilistic R^{α}-mac for $\Delta_{B}^{+}\left(x_{1} \ldots x_{k} ; y_{1} \ldots y_{1}\right)$, with measuring functions $G \mapsto m|G|^{\delta^{\star}(B / A)}$ with $m \in\left\{0,1, \ldots, K^{\star}(B / A)\right\}$.

Corollary

Let B be a graph on $\{1, \ldots, k+I\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then $\left(\hat{G}_{n}^{\alpha}: n \in \omega\right)$ is a probabilistic R^{α}-mac for $\Delta_{B}^{+}\left(x_{1} \ldots x_{k} ; y_{1} \ldots y_{l}\right)$, with measuring functions $G \mapsto m|G|^{\delta^{\star}(B / A)}$ with $m \in\left\{0,1, \ldots, K^{\star}(B / A)\right\}$.

Proof.

- We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.

Corollary

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then ($\hat{G}_{n}^{\alpha}: n \in \omega$) is a probabilistic R^{α}-mac for $\Delta_{B}^{+}\left(x_{1} \ldots x_{k} ; y_{1} \ldots y_{l}\right)$, with measuring functions $G \mapsto m|G|^{\delta^{\star}(B / A)}$ with $m \in\left\{0,1, \ldots, K^{\star}(B / A)\right\}$.

Proof.

- We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.
- If $\bar{b} \not \vDash \Delta_{A}^{+}(\bar{y})$ then $\left|\Delta_{B}^{+}\left(\hat{G}_{n}^{|\overline{\mid}|}, \bar{b}\right)\right|=0$.

Corollary

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then ($\hat{G}_{n}^{\alpha}: n \in \omega$) is a probabilistic R^{α}-mac for $\Delta_{B}^{+}\left(x_{1} \ldots x_{k} ; y_{1} \ldots y_{l}\right)$, with measuring functions $G \mapsto m|G|^{\delta^{\star}(B / A)}$ with $m \in\left\{0,1, \ldots, K^{\star}(B / A)\right\}$.

Proof.

- We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.
- If $\bar{b} \not \vDash \Delta_{A}^{+}(\bar{y})$ then $\left|\Delta_{B}^{+}\left(\hat{G}_{n}^{|\overline{\mid}|}, \bar{b}\right)\right|=0$.
- If $\bar{b} \models \Delta_{A}^{+}(\bar{y})$ we first count the number of extensions of \bar{b} to a copy of R - with probability approaching 1 , there are $\leq K(R / A)$ such extensions for any such \bar{b}. Note that " \bar{b} has m extensions to R " is definable.

Corollary

Let B be a graph on $\{1, \ldots, k+I\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then $\left(\hat{G}_{n}^{\alpha}: n \in \omega\right)$ is a probabilistic R^{α}-mac for $\Delta_{B}^{+}\left(x_{1} \ldots x_{k} ; y_{1} \ldots y_{l}\right)$, with measuring functions $G \mapsto m|G|^{\delta^{\star}(B / A)}$ with $m \in\left\{0,1, \ldots, K^{\star}(B / A)\right\}$.

Proof.

- We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.
- If $\bar{b} \mid \neq \Delta_{A}^{+}(\bar{y})$ then $\left|\Delta_{B}^{+}\left(\hat{G}_{n}^{|\bar{x}|}, \bar{b}\right)\right|=0$.
- If $\bar{b} \models \Delta_{A}^{+}(\bar{y})$ we first count the number of extensions of \bar{b} to a copy of R - with probability approaching 1 , there are $\leq K(R / A)$ such extensions for any such \bar{b}. Note that " \bar{b} has m extensions to R " is definable.
- If \bar{b} has m extensions to R, then each of those extensions has approximately $n^{\delta(B / R)}$ extensions to B, so \bar{b} has in total approximately $m n^{\delta(B / R)}$ extensions to B. That is, $\left|\Delta_{A}^{+}\left(\hat{G}_{n}^{|\bar{x}|}, \bar{b}\right)\right|$ is approximately $m n^{\delta(B / R)}$.
- Now we go from $\Delta_{B}^{+}(\bar{x} \bar{y})$ to $\Delta_{B}(\bar{x} \bar{y})$.
- Now we go from $\Delta_{B}^{+}(\bar{x} \bar{y})$ to $\Delta_{B}(\bar{x} \bar{y})$.
- Observe that $\Delta_{B}(\bar{x} \bar{y})$ is equivalent to $\Delta_{B}^{+}(\bar{x} \bar{y}) \wedge \bigwedge_{B^{\prime}} \neg \Delta_{B^{\prime}}^{+}(\bar{x} \bar{y})$, where B^{\prime} ranges over all graphs B^{\prime} obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$
\left|\Delta_{B}(\bar{x}, \bar{b})\right|=\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|-\sum_{k}(-1)^{k} \sum_{B^{\prime} \in B(k)}\left|\Delta_{B^{\prime}}^{+}(\bar{x}, \bar{b})\right|
$$

where $B(k)$ is the collection of graphs obtained by adding k edges to B

- Now we go from $\Delta_{B}^{+}(\bar{x} \bar{y})$ to $\Delta_{B}(\bar{x} \bar{y})$.
- Observe that $\Delta_{B}(\bar{x} \bar{y})$ is equivalent to $\Delta_{B}^{+}(\bar{x} \bar{y}) \wedge \bigwedge_{B^{\prime}} \neg \Delta_{B^{\prime}}^{+}(\bar{x} \bar{y})$, where B^{\prime} ranges over all graphs B^{\prime} obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$
\left|\Delta_{B}(\bar{x}, \bar{b})\right|=\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|-\sum_{k}(-1)^{k} \sum_{B^{\prime} \in B(k)}\left|\Delta_{B^{\prime}}^{+}(\bar{x}, \bar{b})\right|
$$

where $B(k)$ is the collection of graphs obtained by adding k edges to B

- Two well-intentioned but incorrect arguments:
- Now we go from $\Delta_{B}^{+}(\bar{x} \bar{y})$ to $\Delta_{B}(\bar{x} \bar{y})$.
- Observe that $\Delta_{B}(\bar{x} \bar{y})$ is equivalent to $\Delta_{B}^{+}(\bar{x} \bar{y}) \wedge \wedge_{B^{\prime}} \neg \Delta_{B^{\prime}}^{+}(\bar{x} \bar{y})$, where B^{\prime} ranges over all graphs B^{\prime} obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$
\left|\Delta_{B}(\bar{x}, \bar{b})\right|=\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|-\sum_{k}(-1)^{k} \sum_{B^{\prime} \in B(k)}\left|\Delta_{B^{\prime}}^{+}(\bar{x}, \bar{b})\right|,
$$

where $B(k)$ is the collection of graphs obtained by adding k edges to B

- Two well-intentioned but incorrect arguments:
(1) This sum is a linear combination of terms each approximately of the form $k n^{\gamma}$ for some $k \in \mathbb{Z}$ and $\gamma \in \mathbb{R}$. Such a "polynomial" is approximately equal to its leading term.
- Now we go from $\Delta_{B}^{+}(\bar{x} \bar{y})$ to $\Delta_{B}(\bar{x} \bar{y})$.
- Observe that $\Delta_{B}(\bar{x} \bar{y})$ is equivalent to $\Delta_{B}^{+}(\bar{x} \bar{y}) \wedge \wedge_{B^{\prime}} \neg \Delta_{B^{\prime}}^{+}(\bar{x} \bar{y})$, where B^{\prime} ranges over all graphs B^{\prime} obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$
\left|\Delta_{B}(\bar{x}, \bar{b})\right|=\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|-\sum_{k}(-1)^{k} \sum_{B^{\prime} \in B(k)}\left|\Delta_{B^{\prime}}^{+}(\bar{x}, \bar{b})\right|,
$$

where $B(k)$ is the collection of graphs obtained by adding k edges to B

- Two well-intentioned but incorrect arguments:
(1) This sum is a linear combination of terms each approximately of the form $k n^{\gamma}$ for some $k \in \mathbb{Z}$ and $\gamma \in \mathbb{R}$. Such a "polynomial" is approximately equal to its leading term.
(2) This sum is asymptotically equivalent to $\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|$ - edges are rare, and so almost all positive copies of B should be full copies of B (i.e. B as an induced subgraph $)$ - that is, $\left|\Delta_{B^{\prime}}^{+}(\bar{x}, \bar{b})\right|=o\left(\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|\right)$
- (1) This sum is a linear combination of terms each approximately of the form $k n^{\gamma}$ for some $k \in \mathbb{Z}$ and $\gamma \in \mathbb{R}$. Such a "polynomial" is approximately equal to its leading term.
(2) This sum is asymptotically equivalent to $\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|$ - edges are rare, and so almost all positive copies of B should be full copies of B (i.e. B as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^{2}+3$ and $n^{2}+\ln n$. Each is asymptotically equal to n^{k} for some k, but their difference is not.
- (1) This sum is a linear combination of terms each approximately of the form $k n^{\gamma}$ for some $k \in \mathbb{Z}$ and $\gamma \in \mathbb{R}$. Such a "polynomial" is approximately equal to its leading term.
(2) This sum is asymptotically equivalent to $\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|$ - edges are rare, and so almost all positive copies of B should be full copies of B (i.e. B as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^{2}+3$ and $n^{2}+\ln n$. Each is asymptotically equal to n^{k} for some k, but their difference is not.
- (1) This sum is a linear combination of terms each approximately of the form $k n^{\gamma}$ for some $k \in \mathbb{Z}$ and $\gamma \in \mathbb{R}$. Such a "polynomial" is approximately equal to its leading term.
(2) This sum is asymptotically equivalent to $\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|$ - edges are rare, and so almost all positive copies of B should be full copies of B (i.e. B as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^{2}+3$ and $n^{2}+\ln n$. Each is asymptotically equal to n^{k} for some k, but their difference is not.
- If Argument 2 were sound, this would not be a problem. But we can have $\delta^{\star}\left(B^{\prime} / A\right)=\delta^{\star}(B / A)$, even though $\delta\left(B^{\prime} / A\right) \leq \delta(B / A)-\alpha$.
- (1) This sum is a linear combination of terms each approximately of the form $k n^{\gamma}$ for some $k \in \mathbb{Z}$ and $\gamma \in \mathbb{R}$. Such a "polynomial" is approximately equal to its leading term.
(2) This sum is asymptotically equivalent to $\left|\Delta_{B}^{+}(\bar{x}, \bar{b})\right|$ - edges are rare, and so almost all positive copies of B should be full copies of B (i.e. B as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^{2}+3$ and $n^{2}+\ln n$. Each is asymptotically equal to n^{k} for some k, but their difference is not.
- If Argument 2 were sound, this would not be a problem. But we can have $\delta^{\star}\left(B^{\prime} / A\right)=\delta^{\star}(B / A)$, even though $\delta\left(B^{\prime} / A\right) \leq \delta(B / A)-\alpha$.
- Sketch of problem and solution: if we only add edges to the rigid part R of B over A, it is possible to have $\delta\left(B^{\prime} / R\right)=\delta(B / R)$. In this case, every extension of R^{\prime} (the rigid part of B^{\prime}) to B^{\prime} is already an extension of R to B (since we are adding no new edges from R to the safe part of B). Therefore in the inclusion-exclusion formula, when we subtract this number of extensions, we are cancelling out an earlier term in its entirety, not asymptotically as in the earlier bullet point. (Board example)
- We now show how to find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$.
- We now show how to find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$.
- Note: by the theory T^{α}, it suffices to consider the case where each B_{i} is rigid over the graph on a, \bar{b}.
- We now show how to find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$.
- Note: by the theory T^{α}, it suffices to consider the case where each B_{i} is rigid over the graph on a, \bar{b}.
- Given B_{1}, \ldots, B_{k} as above, we can find A_{1}, \ldots, A_{I} such that for any $a, \bar{b}, \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})$ if and only if $\bigvee_{j} \exists \bar{z} \Delta_{A_{j}}(a, \bar{b}, \bar{z})$. (Picture proof on board)
- We now show how to find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$.
- Note: by the theory T^{α}, it suffices to consider the case where each B_{i} is rigid over the graph on a, \bar{b}.
- Given B_{1}, \ldots, B_{k} as above, we can find A_{1}, \ldots, A_{l} such that for any $a, \bar{b}, \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})$ if and only if $\bigvee_{j} \exists \bar{z} \Delta_{A_{j}}(a, \bar{b}, \bar{z})$. (Picture proof on board)
- For a given \bar{b}, we wish to count the number of a such that $\hat{G}_{n}^{\alpha} \models \bigvee_{j} \exists \bar{z} \Delta_{A_{j}}(a, \bar{b}, \bar{z})$.
- We now show how to find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$.
- Note: by the theory T^{α}, it suffices to consider the case where each B_{i} is rigid over the graph on a, \bar{b}.
- Given B_{1}, \ldots, B_{k} as above, we can find A_{1}, \ldots, A_{l} such that for any $a, \bar{b}, \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})$ if and only if $\bigvee_{j} \exists \bar{z} \Delta_{A_{j}}(a, \bar{b}, \bar{z})$. (Picture proof on board)
- For a given \bar{b}, we wish to count the number of a such that $\hat{G}_{n}^{\alpha} \models \bigvee_{j} \exists \bar{z} \Delta_{A_{j}}(a, \bar{b}, \bar{z})$.
- To do this, we enumerate every instance of a occuring in a copy of some A_{j} over \bar{b}.
- We now show how to find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}$.
- Note: by the theory T^{α}, it suffices to consider the case where each B_{i} is rigid over the graph on a, \bar{b}.
- Given B_{1}, \ldots, B_{k} as above, we can find A_{1}, \ldots, A_{l} such that for any $a, \bar{b}, \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})$ if and only if $\bigvee_{j} \exists \bar{z} \Delta_{A_{j}}(a, \bar{b}, \bar{z})$. (Picture proof on board)
- For a given \bar{b}, we wish to count the number of a such that $\hat{G}_{n}^{\alpha} \models \bigvee_{j} \exists \bar{z} \Delta_{A_{j}}(a, \bar{b}, \bar{z})$.
- To do this, we enumerate every instance of a occuring in a copy of some A_{j} over \bar{b}.
- By inclusion-exclusion principle, we add up all instances of a which occur at least once, subtract the number of instances of a occuring twice, add the number of instances of a occuring three times...
- Instances of a occurring at least once are given by the total number of extensions of \bar{b} to some A_{i}.
- Instances of a occurring at least once are given by the total number of extensions of \bar{b} to some A_{i}.
- Instances of a occuring at least twice are given by counting extensions of \bar{b} to graphs C which can be written as a union as $A_{i} \cup A_{j}$ over $a \bar{b}$, counting once for every such union. And so on.
- Instances of a occurring at least once are given by the total number of extensions of \bar{b} to some A_{i}.
- Instances of a occuring at least twice are given by counting extensions of \bar{b} to graphs C which can be written as a union as $A_{i} \cup A_{j}$ over $a \bar{b}$, counting once for every such union. And so on.
- By rigidity, there is some K such that no $a \bar{b}$ extends to a copy of C where C can be written as a union of $\geq K$ instances of A_{i} 's - since the number of copies of $a \bar{b}$ to any one A_{i} is (with probability -i) bounded by some K_{i}. So this process terminates!
- Instances of a occurring at least once are given by the total number of extensions of \bar{b} to some A_{i}.
- Instances of a occuring at least twice are given by counting extensions of \bar{b} to graphs C which can be written as a union as $A_{i} \cup A_{j}$ over $a \bar{b}$, counting once for every such union. And so on.
- By rigidity, there is some K such that no $a \bar{b}$ extends to a copy of C where C can be written as a union of $\geq K$ instances of A_{i} 's - since the number of copies of $a \bar{b}$ to any one A_{i} is (with probability -i) bounded by some K_{i}. So this process terminates!
- We are left with

$$
\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\right\}\left|=\sum_{k=1}^{K}(-1)^{k} \sum_{C \in G p h_{i}} N(k, C) \cdot\right| \Delta_{C}\left(G^{\prime c}, \bar{b}\right) \mid
$$

where $N(k, C)$ counts the number of unordered sets of embeddings $\left\{\iota_{1}, \ldots, \iota_{k}\right\}$ of graphs in $\left\{A_{1}, \ldots, A_{l}\right\}$ into C such that C is the union of their images.

- To find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z}) \wedge \bigwedge_{j} \neg \exists \bar{z} \Delta_{D_{j}}(a, \bar{b}, \bar{z})\right\}$, we appeal to inclusion-exclusion again, as

$$
\left|A \cap \bigcap_{j=1}^{\prime}\left(A \backslash B_{j}\right)\right|=|A|-\sum_{k} \sum_{i_{1}<\ldots<i_{k} \leq 1}\left|A \cap \bigcap_{j} B_{i_{j}}\right| .
$$

- To find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z}) \wedge \bigwedge_{j} \neg \exists \bar{z} \Delta_{D_{j}}(a, \bar{b}, \bar{z})\right\}$, we appeal to inclusion-exclusion again, as

$$
\left|A \cap \bigcap_{j=1}^{\prime}\left(A \backslash B_{j}\right)\right|=|A|-\sum_{k} \sum_{i_{1}<\ldots<i_{k} \leq 1}\left|A \cap \bigcap_{j} B_{i_{j}}\right| .
$$

- This expression is a \mathbb{Z}-linear combination of numbers asymptotically of the form $n^{a-b \alpha}$. The two flawed arguments from the quantifier-free case apply again, and the fix is similar though more complicated.
- To find the cardinality of $\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z}) \wedge \bigwedge_{j} \neg \exists \bar{z} \Delta_{D_{j}}(a, \bar{b}, \bar{z})\right\}$, we appeal to inclusion-exclusion again, as

$$
\left|A \cap \bigcap_{j=1}^{\prime}\left(A \backslash B_{j}\right)\right|=|A|-\sum_{k} \sum_{i_{1}<\ldots<i_{k} \leq 1}\left|A \cap \bigcap_{j} B_{i_{j}}\right| .
$$

- This expression is a \mathbb{Z}-linear combination of numbers asymptotically of the form $n^{a-b \alpha}$. The two flawed arguments from the quantifier-free case apply again, and the fix is similar though more complicated.
- Briefly: we only care about counting graph extensions of \bar{b} to finitely many graphs C. Consider the rigid parts R_{C} of each such extension. We can definably specify, for \bar{b}, the number of copies to each R_{C}, and the ways in which these copies intersect.
- To find the cardinality of
$\left\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z}) \wedge \bigwedge_{j} \neg \exists \bar{z} \Delta_{D_{j}}(a, \bar{b}, \bar{z})\right\}$, we appeal to inclusion-exclusion again, as

$$
\left|A \cap \bigcap_{j=1}^{\prime}\left(A \backslash B_{j}\right)\right|=|A|-\sum_{k} \sum_{i_{1}<\ldots<i_{k} \leq 1}\left|A \cap \bigcap_{j} B_{i_{j}}\right| .
$$

- This expression is a \mathbb{Z}-linear combination of numbers asymptotically of the form $n^{a-b \alpha}$. The two flawed arguments from the quantifier-free case apply again, and the fix is similar though more complicated.
- Briefly: we only care about counting graph extensions of \bar{b} to finitely many graphs C. Consider the rigid parts R_{C} of each such extension. We can definably specify, for \bar{b}, the number of copies to each R_{C}, and the ways in which these copies intersect.
- For every possible such specification, we show, as in the quantifier-free case, that when leading terms in the associated "polynomial" ($\sum k n^{\gamma}$ for $\gamma \in \mathbb{R}$) cancel, they cancel in their entirety, and the resulting combination is still asymptotically equal to such a polynomial.

References

- S. Shelah \& J. Spencer "Zero-One Laws for Sparse Random Graphs" Journal of the American Mathematical Society, Vol. 1, No. 1 (1988)
- Laskowski, M. "A simpler axiomatization of the Shelah-Spencer almost sure theories: Israel Journal of Mathematics, Vol. 161 (2007)
- Kleitman, D.J. \& Rothschild, B.L. "Asymptotic Enumeration of Partial Orders on a Finite Set" Transactions of the American Mathematical Society, Vol. 205 (1975)
- Kim, J.H. \& Vu, V. H. "Concentration of Multivariate Polynomials and Its Applications" Combinatorica, Vol. 20 (2000)

