Probabilistic *R*-Macs

Alex Van Abel

Wesleyan University

October 14 2023 - NERDS 24.0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition (Macpherson & Steinhorn 08)

A family $(M_k : k \in \omega)$ of finite *L*-structures is a *one-dimensional* asymptotic class if for every *L*-formula $\varphi(x_1, \ldots, x_n, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$, pairs $(\mu_1, d_1), \ldots, (\mu_r, d_r) \in \mathbb{R} \times \{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that

• • = • • = •

Definition (Macpherson & Steinhorn 08)

A family $(M_k : k \in \omega)$ of finite *L*-structures is a *one-dimensional* asymptotic class if for every *L*-formula $\varphi(x_1, \ldots, x_n, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$, pairs $(\mu_1, d_1), \ldots, (\mu_r, d_r) \in \mathbb{R} \times \{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that

• the sets $\pi_1(M_k^{|\bar{y}|}), \ldots, \pi_r(M_k^{|\bar{y}|})$ partition $M_k^{|\bar{y}|}$ for each (sufficiently large) k, and

くぼう くほう くほう しほ

Definition (Macpherson & Steinhorn 08)

A family $(M_k : k \in \omega)$ of finite *L*-structures is a *one-dimensional* asymptotic class if for every *L*-formula $\varphi(x_1, \ldots, x_n, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$, pairs $(\mu_1, d_1), \ldots, (\mu_r, d_r) \in \mathbb{R} \times \{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that

- the sets $\pi_1(M_k^{|\bar{y}|}), \ldots, \pi_r(M_k^{|\bar{y}|})$ partition $M_k^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $ar{b}\in\pi_i(M_k^{|ar{y}|})$ then $\left||arphi(M_k^n,ar{b})-\mu_i|M_k|^{d_i}
 ight|< C|M|^{d_i-1/2}.$

くぼう くほう くほう しほ

Definition (Macpherson & Steinhorn 08)

A family $(M_k : k \in \omega)$ of finite *L*-structures is a *one-dimensional* asymptotic class if for every *L*-formula $\varphi(x_1, \ldots, x_n, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$, pairs $(\mu_1, d_1), \ldots, (\mu_r, d_r) \in \mathbb{R} \times \{1, \ldots, n\}$ and a number $C \in \mathbb{R}$ such that

- the sets $\pi_1(M_k^{|\bar{y}|}), \ldots, \pi_r(M_k^{|\bar{y}|})$ partition $M_k^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $ar{b}\in\pi_i(M_k^{|ar{y}|})$ then $\left||arphi(M_k^n,ar{b})-\mu_i|M_k|^{d_i}
 ight|< C|M|^{d_i-1/2}.$

Theorem (Chatzidakis, Van den Dries & Macintrye 92) The class of finite fields is a one-dimensional asymptotic class.

Alex Van Abel (Wesleyan University)

Probabilistic R-Macs

イロト 不得 トイヨト イヨト

Let *R* be a set of functions $h : \{M : M \text{ is an } L\text{-structure}\} \to \mathbb{R}$. A sequence $(M_k : k \in \omega)$ of *L*-structures is an *R*-multidimensional asymptotic class (R-mac) if for every *L*-formula $\varphi(\bar{x}, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$ and functions $h_1, \ldots, h_r \in R$ such that

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Let *R* be a set of functions $h : \{M : M \text{ is an } L\text{-structure}\} \to \mathbb{R}$. A sequence $(M_k : k \in \omega)$ of *L*-structures is an *R*-multidimensional asymptotic class (R-mac) if for every *L*-formula $\varphi(\bar{x}, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$ and functions $h_1, \ldots, h_r \in R$ such that

• the sets $\pi_1(M_k^{|\bar{y}|}), \ldots, \pi_r(M_k^{|\bar{y}|})$ partition $M_k^{|\bar{y}|}$ for each (sufficiently large) k, and

くぼう くほう くほう しほ

Let *R* be a set of functions $h : \{M : M \text{ is an } L\text{-structure}\} \to \mathbb{R}$. A sequence $(M_k : k \in \omega)$ of *L*-structures is an *R*-multidimensional asymptotic class (R-mac) if for every *L*-formula $\varphi(\bar{x}, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$ and functions $h_1, \ldots, h_r \in R$ such that

- the sets $\pi_1(M_k^{|\bar{y}|}), \ldots, \pi_r(M_k^{|\bar{y}|})$ partition $M_k^{|\bar{y}|}$ for each (sufficiently large) k, and
- if $ar{b}\in \pi_i(M_k^{|ar{y}|})$ then $\left||arphi(M_k^n,ar{b})-h_i(M_k)
 ight|=o(h_i(M_k)).$

Let *R* be a set of functions $h : \{M : M \text{ is an } L\text{-structure}\} \to \mathbb{R}$. A sequence $(M_k : k \in \omega)$ of *L*-structures is an *R*-multidimensional asymptotic class (R-mac) if for every *L*-formula $\varphi(\bar{x}, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$ and functions $h_1, \ldots, h_r \in R$ such that

• the sets $\pi_1(M_k^{|\bar{y}|}), \ldots, \pi_r(M_k^{|\bar{y}|})$ partition $M_k^{|\bar{y}|}$ for each (sufficiently large) k, and

• if
$$ar{b} \in \pi_i(M_k^{|ar{y}|})$$
 then $\left||\varphi(M_k^n,ar{b}) - h_i(M_k)\right| = o(h_i(M_k)).$

A one-dimensional asymptotic class is an *R*-mac where *R* is the set of functions $\{M \mapsto \mu | M |^d : \mu \in \mathbb{R}, d \in \mathbb{N}\}.$

(人間) トイヨト イヨト ニヨ

Let *R* be a set of functions $h : \{M : M \text{ is an } L\text{-structure}\} \to \mathbb{R}$. A sequence $(M_k : k \in \omega)$ of *L*-structures is an *R*-multidimensional asymptotic class (R-mac) if for every *L*-formula $\varphi(\bar{x}, \bar{y})$, there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$ and functions $h_1, \ldots, h_r \in R$ such that

• the sets $\pi_1(M_k^{|\bar{y}|}), \ldots, \pi_r(M_k^{|\bar{y}|})$ partition $M_k^{|\bar{y}|}$ for each (sufficiently large) k, and

• if
$$\overline{b} \in \pi_i(M_k^{|\overline{y}|})$$
 then $\left| |\varphi(M_k^n, \overline{b}) - h_i(M_k) \right| = o(h_i(M_k)).$

A one-dimensional asymptotic class is an *R*-mac where *R* is the set of functions $\{M \mapsto \mu | M |^d : \mu \in \mathbb{R}, d \in \mathbb{N}\}$.

An *N*-dimensional asymptotic class (introduced by Elwes) is an *R*-mac where *R* is the set of functions $\{M \mapsto \mu | M |^{d/N} : \mu \in \mathbb{R}, d \in \mathbb{N}\}$.

A *random L-structure* is formally a probability distribution on the set of all *L*-structures on a fixed universe.

A *random L-structure* is formally a probability distribution on the set of all *L*-structures on a fixed universe.

In this talk, all random structures considered will be finite – so there is no care we need to take with measurability issues, and we may consider the probability of any property of the random structure \hat{M} .

Let $n \in \omega$ and $p \in [0, 1]$. The Erdős-Rényi random graph $\hat{G}(n, p)$ is the random graph on *n* vertices formed by letting each of the $\binom{n}{2}$ possible edges appear independently with probability *p*.

A B + A B +

Let $n \in \omega$ and $p \in [0, 1]$. The Erdős-Rényi random graph $\hat{G}(n, p)$ is the random graph on *n* vertices formed by letting each of the $\binom{n}{2}$ possible edges appear independently with probability *p*.

Definition

Let $\alpha \in (0,1)$. The Spencer-Shelah random graph sequence with parameter α is the sequence $(\hat{G}_n^{\alpha} := \hat{G}(n, n^{-\alpha}) : n \in \omega)$.

通 ト イ ヨ ト イ ヨ ト

Let $(M_n : n \in \omega)$ be a sequence of random *L*-structures. The *zero-one theory* of the sequence is the set of *L*-sentences

$$\{\phi: \lim_{n\to\infty} \mathbb{P}(M_n \models \phi) = 1\}.$$

• • = • • = •

Let $(M_n : n \in \omega)$ be a sequence of random *L*-structures. The *zero-one theory* of the sequence is the set of *L*-sentences

$$\{\phi: \lim_{n\to\infty} \mathbb{P}(M_n \models \phi) = 1\}.$$

Theorem (Fagin)

For a fixed $p \in (0,1)$, the sequence $(\hat{G}(n,p) : n \in \omega)$ has the theory of the Rado random graph as its zero-one theory.

• • = • • = •

Let $(M_n : n \in \omega)$ be a sequence of random *L*-structures. The *zero-one theory* of the sequence is the set of *L*-sentences

$$\{\phi: \lim_{n\to\infty} \mathbb{P}(M_n \models \phi) = 1\}.$$

Theorem (Fagin)

For a fixed $p \in (0,1)$, the sequence $(\hat{G}(n,p) : n \in \omega)$ has the theory of the Rado random graph as its zero-one theory.

Theorem (Spencer & Shelah)

If α is irrational, the Spencer-Shelah random graph sequence with parameter α has a complete zero-one theory T_{α} .

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Definition (V.)

Let *R* be a set of functions from $\{M : M \text{ is an } L\text{-structure}\}$ to \mathbb{R} . Let $\varphi(\bar{x}; \bar{y})$ be an *L*-formula.

A sequence $(\hat{M}_n : n \in \omega)$ of random *L*-structures is a *probabilistic R-mac* for φ if there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$ and functions $h_1, \ldots, h_r \in R$ such that for every $\epsilon > 0$, the probabilities of the following statements go to 1 as *n* goes to infinity:

• the sets $\pi_1(M_n^{|\bar{y}|}), \ldots, \pi_r(\hat{M}_n^{|\bar{y}|})$ partition $\hat{M}_n^{|\bar{y}|}$, and • if $\bar{b} \in \pi_i(\hat{M}_n^{|\bar{y}|})$ then $(1-\epsilon)h_i(\hat{M}_n) < |\varphi(\hat{M}_n^{|\bar{x}|}, \bar{b})| < (1+\epsilon)h_i(\hat{M}_n)$ $(\hat{M}_n : n \in \omega)$ is a probabilistic *R*-mac if it is a probabilistic *R*-mac for

every formula $\varphi(\bar{x}, \bar{y})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition (V.)

Let *R* be a set of functions from $\{M : M \text{ is an } L\text{-structure}\}$ to \mathbb{R} . Let $\varphi(\bar{x}; \bar{y})$ be an *L*-formula.

A sequence $(\hat{M}_n : n \in \omega)$ of random *L*-structures is a *probabilistic R-mac* for φ if there are *L*-formulas $\pi_1(\bar{y}), \ldots, \pi_r(\bar{y})$ and functions $h_1, \ldots, h_r \in R$ such that for every $\epsilon > 0$, the probabilities of the following statements go to 1 as *n* goes to infinity:

• the sets $\pi_1(M_n^{|\bar{y}|}), \ldots, \pi_r(\hat{M}_n^{|\bar{y}|})$ partition $\hat{M}_n^{|\bar{y}|}$, and • if $\bar{b} \in \pi_i(\hat{M}_n^{|\bar{y}|})$ then $(1-\epsilon)h_i(\hat{M}_n) < |\varphi(\hat{M}_n^{|\bar{x}|}, \bar{b})| < (1+\epsilon)h_i(\hat{M}_n)$ $(\hat{M}_n : n \in \omega)$ is a *probabilistic R-mac* if it is a probabilistic *R*-mac for every formula $\varphi(\bar{x}, \bar{y})$.

Note: The functions h_i are defined on (deterministic) *L*-structures; the expression $h_i(\hat{M}_n)$ is a real-valued random variable.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let $(\hat{M}_n : n \in \omega)$ be a probabilistic *R*-mac. For each *n*, let $X_{n,1}, X_{n,2}, \ldots$ be a sequence of statements (events) about the structure \hat{M}_n . Suppose that for each *k*, we have

$$\liminf_{n\to\infty}\mathbb{P}(\hat{M}_n \text{ satisfies } X_{n,1}, X_{n,2}, \ldots, \text{ and } X_{n,k}) > 0.$$

Then we can find an R-mac $(M_1, M_2, ...)$ such that for every k, M_n satisfies $X_{n,k}$ for cofinitely many n.

• • = • • = •

Let $(\hat{M}_n : n \in \omega)$ be a probabilistic *R*-mac. For each *n*, let $X_{n,1}, X_{n,2}, \ldots$ be a sequence of statements (events) about the structure \hat{M}_n . Suppose that for each *k*, we have

$$\liminf_{n\to\infty} \mathbb{P}(\hat{M}_n \text{ satisfies } X_{n,1}, X_{n,2}, \dots, \text{ and } X_{n,k}) > 0.$$

Then we can find an R-mac $(M_1, M_2, ...)$ such that for every k, M_n satisfies $X_{n,k}$ for cofinitely many n.

Note

For example, we can ensure that the zero-one theory of the \hat{M}_n is (contained in) the limit theory of the M_n .

< 回 > < 三 > < 三 > 、

To show that a sequence $(\hat{M}_n : n \in \omega)$ of random structures is a probabilistic *R*-mac, it suffices to show that it is a probabilistic *R*-mac for every formula $\varphi(x_1; \bar{y})$ with a single object variable (provided that *R* is asymptotically closed under addition and multiplication).

<日

<</p>

To show that a sequence $(\hat{M}_n : n \in \omega)$ of random structures is a probabilistic *R*-mac, it suffices to show that it is a probabilistic *R*-mac for every formula $\varphi(x_1; \bar{y})$ with a single object variable (provided that *R* is asymptotically closed under addition and multiplication).

Proof.

Routine fiber-decomposition proof. To show R is a probabilistic R-mac for $\varphi(x_1 \ldots x_k; \bar{y})$, re-contextualize the variables as $\varphi(x_1; x_2 \ldots x_k \bar{y})$ and obtain estimates for $|\varphi(\hat{M}_n; a_2 \ldots a_k \bar{b})|$, definably for $a_2 \ldots a_k \bar{b})$ by formulas $\pi_i(x_2 \ldots x_k \bar{y})$. By induction, obtain cardinality bounds for $|\pi_i(\hat{M}_n^{k-1}, \bar{b})|$, and use these to bound the size of $|\varphi(\hat{M}_n^k, \bar{b})|$.

イロト 不得 トイヨト イヨト

If C is a class of (deterministic) finite structures, we say C is a probabilistic R-mac if $(\hat{M}_n : n \in \omega)$ is, where \hat{M}_n is the uniform distribution on all structures in C with universe $\{1, \ldots, n\}$.

If C is a class of (deterministic) finite structures, we say C is a probabilistic R-mac if $(\hat{M}_n : n \in \omega)$ is, where \hat{M}_n is the uniform distribution on all structures in C with universe $\{1, \ldots, n\}$.

Proposition

The class of all finite graphs is a probabilistic R-mac, where R is the set $\{M \mapsto \mu | M | ^d : \mu \in \mathbb{R}, d \in \mathbb{N}\}$ (a probabilistic one-dimensional asymptotic class).

 The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence (Ĝ(n, 1/2) : n ∈ ω).

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence (Ĝ(n, 1/2) : n ∈ ω).
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence (Ĝ(n, 1/2) : n ∈ ω).
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.
- By quantifier elimination and the one-variable lemma, it suffices to check the *R*-pmac condition for formulas of the form
 φ(x, ȳ) = Λ_i xEy_i ∧ Λ_j ¬xEy_j ∧ ρ(x, ȳ), where ρ(x, ȳ) expresses that all elements are distinct.

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence (Ĝ(n, 1/2) : n ∈ ω).
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.
- By quantifier elimination and the one-variable lemma, it suffices to check the *R*-pmac condition for formulas of the form
 φ(x, ȳ) = Λ_i xEy_i ∧ Λ_j ¬xEy_j ∧ ρ(x, ȳ), where ρ(x, ȳ) expresses that all elements are distinct.
- That is, we wish to obtain estimates for $|\{a \in \hat{G}_n : \hat{G}_n \models \phi(a, \bar{b})\}|$ for $\bar{b} \in \hat{G}_n$.

- The sequence of uniform distributions for finite graphs is the same as the Erdős-Rényi sequence (Ĝ(n, 1/2) : n ∈ ω).
- This has a complete limit theory, the theory of the random graph, which has quantifier elimination.
- By quantifier elimination and the one-variable lemma, it suffices to check the *R*-pmac condition for formulas of the form
 φ(x, ȳ) = Λ_i xEy_i ∧ Λ_j ¬xEy_j ∧ ρ(x, ȳ), where ρ(x, ȳ) expresses that all elements are distinct.
- That is, we wish to obtain estimates for $|\{a \in \hat{G}_n : \hat{G}_n \models \phi(a, \bar{b})\}|$ for $\bar{b} \in \hat{G}_n$.
- Assuming that all b_i are distinct, the probability that a given a ∉ b
 satisfies φ(a, b) is 2^{-|y|}. Furthermore, these events are mutually
 independent for different a.

- 本間 ト イヨ ト イヨ ト 三 ヨ

Hoeffding's Inequality (Bernoulli Version)

Suppose X_1, \ldots, X_n are independent Bernoulli random variables. Let $S_n = \sum_{i \le n} X_i$. Then $\mathbb{P}(|S_n - \mathbb{E}[S_n]| \ge t) \le e^{-2t^2/n}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Hoeffding's Inequality (Bernoulli Version)

Suppose X_1, \ldots, X_n are independent Bernoulli random variables. Let $S_n = \sum_{i \le n} X_i$. Then $\mathbb{P}(|S_n - \mathbb{E}[S_n]| \ge t) \le e^{-2t^2/n}$.

Proof Sketch Cont'd

• $|\{a \in \hat{G}_n : a\bar{b} \in \phi(\hat{G}_n^{1+|\bar{y}|})\}|$ is a sum of Bernoulli RV's as in Hoeffding's Inequality, with expectation $(n - |\bar{y}|) \cdot 2^{-k} = 2^{-k}n + c$

Hoeffding's Inequality (Bernoulli Version)

Suppose X_1, \ldots, X_n are independent Bernoulli random variables. Let $S_n = \sum_{i \le n} X_i$. Then $\mathbb{P}(|S_n - \mathbb{E}[S_n]| \ge t) \le e^{-2t^2/n}$.

Proof Sketch Cont'd

- $|\{a \in \hat{G}_n : a\bar{b} \in \phi(\hat{G}_n^{1+|\bar{y}|})\}|$ is a sum of Bernoulli RV's as in Hoeffding's Inequality, with expectation $(n |\bar{y}|) \cdot 2^{-k} = 2^{-k}n + c$
- For a given ϵ , the probability that this number is *not* between $(1-\epsilon)2^{-k}n$ and $(1+\epsilon)2^{-k}n$ is $\leq \exp(-2(\epsilon 2^{-k}n)^2/n) = \exp(-\eta n)$ for $\eta = 2^{-2k-1}\epsilon$. This goes to 0 as $n \to \infty$.

- (日本) - (1) -

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

э

(4 回) (4 回) (4 回)

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

• We rely on the following theorem of Kleitman & Rothschild (75):

A B M A B M
The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

- We rely on the following theorem of Kleitman & Rothschild (75):
- Asymptotically most finite partial orders on $\{1, \ldots, n\}$ have three layers in their Hasse diagram, with middle layer of size approximately n/2 and top and bottom layers approximately n/4.

A B M A B M

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

- We rely on the following theorem of Kleitman & Rothschild (75):
- Asymptotically most finite partial orders on $\{1, \ldots, n\}$ have three layers in their Hasse diagram, with middle layer of size approximately n/2 and top and bottom layers approximately n/4.
- The uniform distribution on *these* partial orders can be modeled as an independent-coin-flip random structure, similar to the random graph.

• • = • • = •

The class of all finite partial orders is a probabilistic one-dimensional asymptotic class.

Proof Sketch

- We rely on the following theorem of Kleitman & Rothschild (75):
- Asymptotically most finite partial orders on $\{1, \ldots, n\}$ have three layers in their Hasse diagram, with middle layer of size approximately n/2 and top and bottom layers approximately n/4.
- The uniform distribution on *these* partial orders can be modeled as an independent-coin-flip random structure, similar to the random graph.
- Therefore single-variable definable sets in the random partial order on {1,..., n} have cardinality approximately 2^{-k}n for some k, by the same argument as in the random graph.

3

< 日 > < 同 > < 三 > < 三 > <

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

3

イロト イヨト イヨト イヨト

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch

• We rely on the following quantifier elimination result from Laskowski.

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch

- We rely on the following quantifier elimination result from Laskowski.
- Notation: For a graph *B* on $\{1, \ldots, k\}$, let $\Delta_B(v_1 \ldots v_k)$ be the formula $\bigwedge_{i \in j} v_i E v_j \land \bigwedge_{\neg i \in j} \neg v_i E v_j$. Let $\Delta_B^+(v_1 \ldots v_k)$ be $\bigwedge_{i \in j} v_i E v_j$.

- 本間下 本臣下 本臣下 三臣

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch

- We rely on the following quantifier elimination result from Laskowski.
- Notation: For a graph *B* on $\{1, \ldots, k\}$, let $\Delta_B(v_1 \ldots v_k)$ be the formula $\bigwedge_{i \in j} v_i E v_j \land \bigwedge_{\neg i \in j} \neg v_i E v_j$. Let $\Delta_B^+(v_1 \ldots v_k)$ be $\bigwedge_{i \in j} v_i E v_j$.

Theorem (Laskowski 07)

The theory T^{α} admits quantifier elimination down to formulas of the form $\phi(\bar{x}) := \exists \bar{z} \Delta_B(\bar{x}\bar{z}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch

- We rely on the following quantifier elimination result from Laskowski.
- Notation: For a graph *B* on $\{1, \ldots, k\}$, let $\Delta_B(v_1 \ldots v_k)$ be the formula $\bigwedge_{i \in j} v_i E v_j \land \bigwedge_{\neg i \in j} \neg v_i E v_j$. Let $\Delta_B^+(v_1 \ldots v_k)$ be $\bigwedge_{i \in j} v_i E v_j$.

Theorem (Laskowski 07)

The theory T^{α} admits quantifier elimination down to formulas of the form $\phi(\bar{x}) := \exists \bar{z} \Delta_B(\bar{x}\bar{z}).$

Proof Sketch Continued

• Observe: complete quantifier-free formulas are formulas of the above form for $|\bar{z}| = 0$.

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch Continued

• By quantifier elimination, it suffices to show that $(\hat{G}_n^{\alpha} : n \in \omega)$ is an R^{α} -pmac for conjunctions of formulas of the form $\phi(x, \bar{y}) := \exists \bar{z} \Delta_B(x, \bar{y}, \bar{z})$ and their negations.

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch Continued

- By quantifier elimination, it suffices to show that $(\hat{G}_n^{\alpha} : n \in \omega)$ is an R^{α} -pmac for conjunctions of formulas of the form $\phi(x, \bar{y}) := \exists \bar{z} \Delta_B(x, \bar{y}, \bar{z})$ and their negations.
- We first show asymptoticity results for quantifier-free formulas (i.e. the case $|\bar{z}| = 0$)

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch Continued

- By quantifier elimination, it suffices to show that $(\hat{G}_n^{\alpha} : n \in \omega)$ is an R^{α} -pmac for conjunctions of formulas of the form $\phi(x, \bar{y}) := \exists \bar{z} \Delta_B(x, \bar{y}, \bar{z})$ and their negations.
- We first show asymptoticity results for quantifier-free formulas (i.e. the case $|\bar{z}| = 0$)

For irrational $\alpha \in (0, 1)$, the Spencer-Shelah random graph sequence is a probabilistic \mathbb{R}^{α} -mac, where \mathbb{R}^{α} is the set of functions $\{M \mapsto k | M |^{a-b\alpha} : k, a, b \in \mathbb{N}\}.$

Proof Sketch Continued

- By quantifier elimination, it suffices to show that $(\hat{G}_n^{\alpha} : n \in \omega)$ is an R^{α} -pmac for conjunctions of formulas of the form $\phi(x, \bar{y}) := \exists \bar{z} \Delta_B(x, \bar{y}, \bar{z})$ and their negations.
- We first show asymptoticity results for quantifier-free formulas (i.e. the case $|\bar{z}| = 0$)
- We then sketch how to deal with including conjuncts of the form $\neg \exists \bar{z} \Delta_B(x, \bar{b}, \bar{z}).$

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B/A)$ is the quantity $v - e\alpha$, where v is the number of vertices in $B \setminus A$ and e is the number of edges in B which do not have both endpoints in A.

3

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B/A)$ is the quantity $v - e\alpha$, where v is the number of vertices in $B \setminus A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs. We say that B is *safe over* A if for every $A \subset C \subseteq B \subseteq$, $\delta(C/A) > 0$. We say that B is *rigid over* A if for every $A \subseteq C \subset B$, $\delta(B/C) < 0$.

イロト イヨト イヨト ・

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B/A)$ is the quantity $v - e\alpha$, where v is the number of vertices in $B \setminus A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs. We say that B is *safe over* A if for every $A \subset C \subseteq B \subseteq$, $\delta(C/A) > 0$. We say that B is *rigid over* A if for every $A \subseteq C \subset B$, $\delta(B/C) < 0$.

 \mathcal{T}^{lpha} implies the following sentences about the graph \mathcal{G}

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B/A)$ is the quantity $v - e\alpha$, where v is the number of vertices in $B \setminus A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs. We say that B is *safe over* A if for every $A \subset C \subseteq B \subseteq$, $\delta(C/A) > 0$. We say that B is *rigid over* A if for every $A \subseteq C \subset B$, $\delta(B/C) < 0$.

 \mathcal{T}^{lpha} implies the following sentences about the graph \mathcal{G}

• If $\delta(A/\emptyset) < 0$, then G contains no copy of A

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B/A)$ is the quantity $v - e\alpha$, where v is the number of vertices in $B \setminus A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs. We say that B is *safe over* A if for every $A \subset C \subseteq B \subseteq$, $\delta(C/A) > 0$. We say that B is *rigid over* A if for every $A \subseteq C \subset B$, $\delta(B/C) < 0$.

 \mathcal{T}^{lpha} implies the following sentences about the graph \mathcal{G}

- If $\delta(A/\emptyset) < 0$, then G contains no copy of A
- If A ⊆ B is a safe extension, then every copy of A extends to a copy of B.

Let $A \subseteq B$ be graphs. $\delta_{\alpha}(B/A)$ is the quantity $v - e\alpha$, where v is the number of vertices in $B \setminus A$ and e is the number of edges in B which do not have both endpoints in A.

Definition

Let $A \subseteq B$ be graphs. We say that B is *safe over* A if for every $A \subset C \subseteq B \subseteq$, $\delta(C/A) > 0$. We say that B is *rigid over* A if for every $A \subseteq C \subset B$, $\delta(B/C) < 0$.

 \mathcal{T}^{lpha} implies the following sentences about the graph \mathcal{G}

- If $\delta(A/\emptyset) < 0$, then G contains no copy of A
- If A ⊆ B is a safe extension, then every copy of A extends to a copy of B.
- If A ⊆ B is a rigid extension, then every copy of A extends to at most K(B/A) copies of B (for some fixed number K(B/A).

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^+(G'_n)$ ($\bar{b} \in \Delta(G'_n)$), $\mathbb{E}[|\Delta^+_B(G^k_n, \bar{b})|] \approx n^{\delta(B/A)}$ ($\approx \mathbb{E}[|\Delta_B(G^k_n, \bar{b})|]$).

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^+(G_n^l)$ ($\bar{b} \in \Delta(G_n^l)$), $\mathbb{E}[|\Delta_B^+(G_n^k, \bar{b})|] \approx n^{\delta(B/A)}$ ($\approx \mathbb{E}[|\Delta_B(G_n^k, \bar{b})|]$).

Proof.

There are $(n-l)(n-l-1)\dots(n-l-(k-1)) \approx n^k$ extensions of \bar{b} to (k+l)-tuples $\bar{a}\bar{b}$. For any such (k+l)-tuple to be an element of $\Delta_B^+(G_n^k,\bar{b})$, we need each of the e edges of B to occur, where e is the number in $\delta(B/A) = v - e\alpha$. The probability that this happens is $(n^{-\alpha})^e = n^{-e\alpha}$. By linearity of expectation, the expected number of elements in $\Delta^+(G_n^l)$ is $\approx n^k \cdot n^{-e\alpha} = n^{k-e\alpha} = n^{\delta(B/A)}$. For $\delta_B(G_n^k,\bar{b})$, we note that $\bar{a} \in \delta_B(G_n^k,\bar{b})$ iff $\bar{a} \in \Delta_B^+(G_n^k,\bar{b})$ and $\bar{a} \notin \Delta_{B'}^+(G_n^k,\bar{b})$ for any graph B' for which B is a proper spanning subgraph, and for any such B', $\delta(B'/A) \leq \delta(B/A) - \alpha$.

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^+(G'_n)$ ($\bar{b} \in \Delta(G'_n)$), $\mathbb{E}[|\Delta^+_B(G^k_n, \bar{b})|] \approx n^{\delta(B/A)}$ ($\approx \mathbb{E}[|\Delta_B(G^k_n, \bar{b})|]$).

However, this is *different* from saying that the actual number of extensions of \overline{b} is asymptotically equal to $n^{\delta(B/A)}$. This is not generally the case: if B is not safe over A, then *most* copies of A do not extend to B, even though the expected number of copies is positive.

くぼう くほう くほう

Let B be a graph on $\{1, \ldots, k, k+1, \ldots, k+l\}$, and let A be the subgraph on $\{k+1, \ldots, k+l\}$. Then for any $\bar{b} \in \Delta^+(G'_n)$ ($\bar{b} \in \Delta(G'_n)$), $\mathbb{E}[|\Delta^+_B(G^k_n, \bar{b})|] \approx n^{\delta(B/A)}$ ($\approx \mathbb{E}[|\Delta_B(G^k_n, \bar{b})|]$).

However, this is *different* from saying that the actual number of extensions of \overline{b} is asymptotically equal to $n^{\delta(B/A)}$. This is not generally the case: if B is not safe over A, then *most* copies of A do not extend to B, even though the expected number of copies is positive.

On the other hand...

く 同 ト く ヨ ト く ヨ ト

Theorem (Kim & Vu (2000))

Let B be a graph on $\{1, ..., k, k+1, ..., k+l\}$ and let A be the subgraph on $\{k+1, ..., k+l\}$. Suppose that B is safe over A. Then there is a positive constant $\epsilon > 0$ such that the probability of the statement

for all $\bar{b} \in \Delta^+_A(G'_n), n^{\delta(B/A)} \cdot (1-n^{-\epsilon}) < |\Delta^+_B(G^k_n, \bar{b})| < n^{\delta(B/A)} \cdot (1+n^{-\epsilon})$

goes to 1 as n goes to ∞ .

(人間) トイヨト イヨト ニヨ

Theorem (Kim & Vu (2000))

Let B be a graph on $\{1, ..., k, k+1, ..., k+l\}$ and let A be the subgraph on $\{k+1, ..., k+l\}$. Suppose that B is safe over A. Then there is a positive constant $\epsilon > 0$ such that the probability of the statement

for all
$$ar{b} \in \Delta^+_A(G_n^{\,\prime}), n^{\delta(B/A)} \cdot (1-n^{-\epsilon}) < |\Delta^+_B(G_n^k, ar{b})| < n^{\delta(B/A)} \cdot (1+n^{-\epsilon})$$

goes to 1 as n goes to ∞ .

Corollary

 $(\hat{G}_n^{\alpha} : n \in \omega)$ is a probabilistic \mathbb{R}^{α} -mac for the formula $\Delta_B^+(\bar{x}; \bar{y})$, with measuring functions $G \mapsto 0$ and $h : G \mapsto |G|^{B/A}$.

く 白 ト く ヨ ト く ヨ ト

Theorem (Kim & Vu (2000))

Let B be a graph on $\{1, ..., k, k+1, ..., k+l\}$ and let A be the subgraph on $\{k+1, ..., k+l\}$. Suppose that B is safe over A. Then there is a positive constant $\epsilon > 0$ such that the probability of the statement

for all
$$ar{b} \in \Delta^+_A(G_n^l), n^{\delta(B/A)} \cdot (1-n^{-\epsilon}) < |\Delta^+_B(G_n^k, ar{b})| < n^{\delta(B/A)} \cdot (1+n^{-\epsilon})$$

goes to 1 as n goes to ∞ .

Corollary

 $(\hat{G}_{n}^{\alpha}: n \in \omega)$ is a probabilistic R^{α} -mac for the formula $\Delta_{B}^{+}(\bar{x}; \bar{y})$, with measuring functions $G \mapsto 0$ and $h: G \mapsto |G|^{B/A}$.

Proof.

For every ϵ , with probability approaching 1: if $\hat{G}_n \models \Delta_A^+(\bar{b})$ then $(1-\epsilon)h(\hat{G}_n^{\alpha}) < |\Delta_B((\hat{G}_n^{\alpha})^{|\bar{x}|}, \bar{b})| < (1+\epsilon)h(\hat{G}_n^{\alpha})$. If $\hat{G}_n \not\models \Delta_A^+(\bar{b})$ then $|\Delta_B((\hat{G}_n^{\alpha})^{|\bar{x}|}, \bar{b})| = 0.$

Alex Van Abel (Wesleyan University)

Probabilistic *R*-Macs

October 14 2023 - NERDS 24.0 20 / 27

Alex Van Abel (Wesleyan University)

Probabilistic *R*-Macs

October 14 2023 - NERDS 24.0 20 / 27

Let $A \subseteq B$ be a graph extension. Then there is a unique intermediate subgraph $A \subseteq rs(A, B) \subseteq B$ such that rs(A, B) is rigid over A and B is safe over rs(A, B).

Let $A \subseteq B$ be a graph extension. Then there is a unique intermediate subgraph $A \subseteq rs(A, B) \subseteq B$ such that rs(A, B) is rigid over A and B is safe over rs(A, B).

Definition

Define $\delta^*(B/A)$ to be $\delta(B/R)$, where R = rs(A, B). Define $K^*(B/A)$ to be K(R/A) (the maximum number of extensions of a copy of A to a copy of R in T^{α})

Let $A \subseteq B$ be a graph extension. Then there is a unique intermediate subgraph $A \subseteq rs(A, B) \subseteq B$ such that rs(A, B) is rigid over A and B is safe over rs(A, B).

Definition

Define $\delta^*(B/A)$ to be $\delta(B/R)$, where R = rs(A, B). Define $K^*(B/A)$ to be K(R/A) (the maximum number of extensions of a copy of A to a copy of R in T^{α})

Corollary

Let B be a graph. Then $(\hat{G}_n^{\alpha} : n \in \omega)$ is a probabilistic \mathbb{R}^{α} -mac for $\Delta_B^+(\bar{x}, \bar{y})$.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then $(\hat{G}_n^{\alpha} : n \in \omega)$ is a probabilistic \mathbb{R}^{α} -mac for $\Delta_B^+(x_1 \ldots x_k; y_1 \ldots y_l)$, with measuring functions $G \mapsto m|G|^{\delta^*(B/A)}$ with $m \in \{0, 1, \ldots, K^*(B/A)\}$.

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then $(\hat{G}_n^{\alpha} : n \in \omega)$ is a probabilistic \mathbb{R}^{α} -mac for $\Delta_B^+(x_1 \ldots x_k; y_1 \ldots y_l)$, with measuring functions $G \mapsto m|G|^{\delta^*(B/A)}$ with $m \in \{0, 1, \ldots, K^*(B/A)\}$.

Proof.

• We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then $(\hat{G}_n^{\alpha} : n \in \omega)$ is a probabilistic \mathbb{R}^{α} -mac for $\Delta_B^+(x_1 \ldots x_k; y_1 \ldots y_l)$, with measuring functions $G \mapsto m|G|^{\delta^*(B/A)}$ with $m \in \{0, 1, \ldots, K^*(B/A)\}$.

Proof.

• We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.

• If
$$\bar{b} \not\models \Delta_A^+(\bar{y})$$
 then $|\Delta_B^+(\hat{G}_n^{|\bar{x}|}, \bar{b})| = 0$.

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then $(\hat{G}_n^{\alpha} : n \in \omega)$ is a probabilistic \mathbb{R}^{α} -mac for $\Delta_B^+(x_1 \ldots x_k; y_1 \ldots y_l)$, with measuring functions $G \mapsto m|G|^{\delta^*(B/A)}$ with $m \in \{0, 1, \ldots, K^*(B/A)\}$.

Proof.

• We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.

• If
$$\bar{b} \not\models \Delta^+_A(\bar{y})$$
 then $|\Delta^+_B(\hat{G}_n^{|\bar{x}|}, \bar{b})| = 0.$

Let B be a graph on $\{1, \ldots, k+l\}$. Let A be the induced subgraph on $\{k+1, \ldots, k+l\}$. Then $(\hat{G}_n^{\alpha} : n \in \omega)$ is a probabilistic \mathbb{R}^{α} -mac for $\Delta_B^+(x_1 \ldots x_k; y_1 \ldots y_l)$, with measuring functions $G \mapsto m|G|^{\delta^*(B/A)}$ with $m \in \{0, 1, \ldots, K^*(B/A)\}$.

Proof.

• We have $A \subseteq R \subseteq B$ with R rigid over A and B safe over R.

• If
$$\bar{b} \not\models \Delta^+_A(\bar{y})$$
 then $|\Delta^+_B(\hat{G}_n^{|\bar{x}|}, \bar{b})| = 0.$

- If \bar{b} has m extensions to R, then each of those extensions has approximately $n^{\delta(B/R)}$ extensions to B, so \bar{b} has in total approximately $mn^{\delta(B/R)}$ extensions to B. That is, $|\Delta_A^+(\hat{G}_n^{|\bar{x}|}, \bar{b})|$ is approximately $mn^{\delta(B/R)}$.

• Now we go from $\Delta_B^+(\bar{x}\bar{y})$ to $\Delta_B(\bar{x}\bar{y})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
- Now we go from $\Delta_B^+(\bar{x}\bar{y})$ to $\Delta_B(\bar{x}\bar{y})$.
- Observe that $\Delta_B(\bar{x}\bar{y})$ is equivalent to $\Delta_B^+(\bar{x}\bar{y}) \wedge \bigwedge_{B'} \neg \Delta_{B'}^+(\bar{x}\bar{y})$, where B' ranges over all graphs B' obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$|\Delta_B(ar{x},ar{b})| = |\Delta_B^+(ar{x},ar{b})| - \sum_k (-1)^k \sum_{B'\in B(k)} |\Delta_{B'}^+(ar{x},ar{b})|,$$

- Now we go from $\Delta_B^+(\bar{x}\bar{y})$ to $\Delta_B(\bar{x}\bar{y})$.
- Observe that $\Delta_B(\bar{x}\bar{y})$ is equivalent to $\Delta_B^+(\bar{x}\bar{y}) \wedge \bigwedge_{B'} \neg \Delta_{B'}^+(\bar{x}\bar{y})$, where B' ranges over all graphs B' obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$|\Delta_B(ar{x},ar{b})| = |\Delta_B^+(ar{x},ar{b})| - \sum_k (-1)^k \sum_{B'\in B(k)} |\Delta_{B'}^+(ar{x},ar{b})|,$$

• Two well-intentioned but incorrect arguments:

- Now we go from $\Delta_B^+(\bar{x}\bar{y})$ to $\Delta_B(\bar{x}\bar{y})$.
- Observe that $\Delta_B(\bar{x}\bar{y})$ is equivalent to $\Delta_B^+(\bar{x}\bar{y}) \wedge \bigwedge_{B'} \neg \Delta_{B'}^+(\bar{x}\bar{y})$, where B' ranges over all graphs B' obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$|\Delta_B(ar{x},ar{b})| = |\Delta_B^+(ar{x},ar{b})| - \sum_k (-1)^k \sum_{B'\in B(k)} |\Delta_{B'}^+(ar{x},ar{b})|,$$

- Two well-intentioned but incorrect arguments:
 - This sum is a linear combination of terms each approximately of the form kn^γ for some k ∈ Z and γ ∈ ℝ. Such a "polynomial" is approximately equal to its leading term.

- Now we go from $\Delta_B^+(\bar{x}\bar{y})$ to $\Delta_B(\bar{x}\bar{y})$.
- Observe that $\Delta_B(\bar{x}\bar{y})$ is equivalent to $\Delta_B^+(\bar{x}\bar{y}) \wedge \bigwedge_{B'} \neg \Delta_{B'}^+(\bar{x}\bar{y})$, where B' ranges over all graphs B' obtained by exactly one edge to B. By inclusion-exclusion, we obtain

$$ert \Delta_B(ar x,ar b) ert = ert \Delta_B^+(ar x,ar b) ert - \sum_k (-1)^k \sum_{B'\in B(k)} ert \Delta_{B'}^+(ar x,ar b) ert,$$

- Two well-intentioned but incorrect arguments:
 - O This sum is a linear combination of terms each approximately of the form kn^γ for some k ∈ Z and γ ∈ ℝ. Such a "polynomial" is approximately equal to its leading term.
 - **2** This sum is asymptotically equivalent to $|\Delta_B^+(\bar{x}, \bar{b})|$ edges are rare, and so almost all positive copies of *B* should be *full* copies of *B* (i.e. *B* as an induced subgraph) that is, $|\Delta_{B'}^+(\bar{x}, \bar{b})| = o(|\Delta_B^+(\bar{x}, \bar{b})|)$

- This sum is a linear combination of terms each approximately of the form kn^γ for some k ∈ Z and γ ∈ ℝ. Such a "polynomial" is approximately equal to its leading term.
 - **2** This sum is asymptotically equivalent to $|\Delta_B^+(\bar{x}, \bar{b})|$ edges are rare, and so almost all positive copies of *B* should be *full* copies of *B* (i.e. *B* as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^2 + 3$ and $n^2 + \ln n$. Each is asymptotically equal to n^k for some k, but their difference is not.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- This sum is a linear combination of terms each approximately of the form kn^γ for some k ∈ Z and γ ∈ ℝ. Such a "polynomial" is approximately equal to its leading term.
 - **2** This sum is asymptotically equivalent to $|\Delta_B^+(\bar{x}, \bar{b})|$ edges are rare, and so almost all positive copies of *B* should be *full* copies of *B* (i.e. *B* as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^2 + 3$ and $n^2 + \ln n$. Each is asymptotically equal to n^k for some k, but their difference is not.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- This sum is a linear combination of terms each approximately of the form kn^γ for some k ∈ Z and γ ∈ ℝ. Such a "polynomial" is approximately equal to its leading term.
 - **2** This sum is asymptotically equivalent to $|\Delta_B^+(\bar{x}, \bar{b})|$ edges are rare, and so almost all positive copies of *B* should be *full* copies of *B* (i.e. *B* as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^2 + 3$ and $n^2 + \ln n$. Each is asymptotically equal to n^k for some k, but their difference is not.
- If Argument 2 were sound, this would not be a problem. But we can have $\delta^*(B'/A) = \delta^*(B/A)$, even though $\delta(B'/A) \le \delta(B/A) \alpha$.

- 本間 と く ヨ と く ヨ と 二 ヨ

- This sum is a linear combination of terms each approximately of the form kn^γ for some k ∈ Z and γ ∈ ℝ. Such a "polynomial" is approximately equal to its leading term.
 - **2** This sum is asymptotically equivalent to $|\Delta_B^+(\bar{x}, \bar{b})|$ edges are rare, and so almost all positive copies of *B* should be *full* copies of *B* (i.e. *B* as an induced subgraph)
- Argument 1 is flawed because asymptotic behavior does not play well with subtraction: consider $n^2 + 3$ and $n^2 + \ln n$. Each is asymptotically equal to n^k for some k, but their difference is not.
- If Argument 2 were sound, this would not be a problem. But we can have $\delta^*(B'/A) = \delta^*(B/A)$, even though $\delta(B'/A) \le \delta(B/A) \alpha$.
- Sketch of problem and solution: if we only add edges to the rigid part R of B over A, it is possible to have δ(B'/R) = δ(B/R). In this case, every extension of R' (the rigid part of B') to B' is already an extension of R to B (since we are adding no new edges from R to the safe part of B). Therefore in the inclusion-exclusion formula, when we subtract this number of extensions, we are cancelling out an earlier term in its entirety, not asymptotically as in the earlier bullet point. (Board example)

• We now show how to find the cardinality of $\{a : \bigwedge_i \exists \overline{z} \Delta_{B_i}(a, \overline{b}, \overline{z})\}$.

Alex Van Abel (Wesleyan University)

Probabilistic R-Macs

October 14 2023 - NERDS 24.0 24 / 27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We now show how to find the cardinality of $\{a : \bigwedge_i \exists \bar{z} \Delta_{B_i}(a, \bar{b}, \bar{z})\}$.
- Note: by the theory *T^α*, it suffices to consider the case where each *B_i* is rigid over the graph on *a*, *b*.

- We now show how to find the cardinality of $\{a : \bigwedge_i \exists \bar{z} \Delta_{B_i}(a, \bar{b}, \bar{z})\}$.
- Note: by the theory *T^α*, it suffices to consider the case where each *B_i* is rigid over the graph on *a*, *b*.
- Given B₁,..., B_k as above, we can find A₁,..., A_l such that for any a, b̄, Λ_i ∃z̄Δ_{B_i}(a, b̄, z̄) if and only if V_j ∃z̄Δ_{A_j}(a, b̄, z̄). (Picture proof on board)

- We now show how to find the cardinality of $\{a : \bigwedge_i \exists \bar{z} \Delta_{B_i}(a, \bar{b}, \bar{z})\}$.
- Note: by the theory *T^α*, it suffices to consider the case where each *B_i* is rigid over the graph on *a*, *b*.
- Given B₁,..., B_k as above, we can find A₁,..., A_l such that for any a, b̄, Λ_i ∃z̄Δ_{B_i}(a, b̄, z̄) if and only if V_j ∃z̄Δ_{A_j}(a, b̄, z̄). (Picture proof on board)
- For a given \bar{b} , we wish to count the number of a such that $\hat{G}_n^{\alpha} \models \bigvee_j \exists \bar{z} \Delta_{A_j}(a, \bar{b}, \bar{z}).$

- We now show how to find the cardinality of $\{a : \bigwedge_i \exists \bar{z} \Delta_{B_i}(a, \bar{b}, \bar{z})\}$.
- Note: by the theory *T^α*, it suffices to consider the case where each *B_i* is rigid over the graph on *a*, *b*.
- Given B₁,..., B_k as above, we can find A₁,..., A_l such that for any a, b̄, Λ_i ∃z̄Δ_{B_i}(a, b̄, z̄) if and only if V_j ∃z̄Δ_{A_j}(a, b̄, z̄). (Picture proof on board)
- For a given \bar{b} , we wish to count the number of a such that $\hat{G}_n^{\alpha} \models \bigvee_j \exists \bar{z} \Delta_{A_j}(a, \bar{b}, \bar{z}).$
- To do this, we enumerate every instance of a occuring in a copy of some A_j over b
 .

- We now show how to find the cardinality of $\{a : \bigwedge_i \exists \bar{z} \Delta_{B_i}(a, \bar{b}, \bar{z})\}$.
- Note: by the theory *T^α*, it suffices to consider the case where each *B_i* is rigid over the graph on *a*, *b*.
- Given B₁,..., B_k as above, we can find A₁,..., A_l such that for any a, b̄, Λ_i ∃z̄Δ_{B_i}(a, b̄, z̄) if and only if V_j ∃z̄Δ_{A_j}(a, b̄, z̄). (Picture proof on board)
- For a given \bar{b} , we wish to count the number of a such that $\hat{G}_n^{\alpha} \models \bigvee_j \exists \bar{z} \Delta_{A_j}(a, \bar{b}, \bar{z}).$
- To do this, we enumerate every instance of a occuring in a copy of some A_j over b
 .
- By inclusion-exclusion principle, we add up all instances of *a* which occur at least once, subtract the number of instances of *a* occuring twice, add the number of instances of *a* occuring three times...

 Instances of a occurring at least once are given by the total number of extensions of b
 to some A_i.

A B A A B A

- Instances of a occurring at least once are given by the total number of extensions of b
 to some A_i.
- Instances of a occuring at least *twice* are given by counting extensions of b̄ to graphs C which can be written as a union as A_i ∪ A_j over ab̄, counting once for every such union. And so on.

- Instances of a occurring at least once are given by the total number of extensions of b
 to some A_i.
- Instances of a occuring at least twice are given by counting extensions of b̄ to graphs C which can be written as a union as A_i ∪ A_j over ab̄, counting once for every such union. And so on.
- By rigidity, there is some K such that no ab̄ extends to a copy of C where C can be written as a union of ≥ K instances of A_i's since the number of copies of ab̄ to any one A_i is (with probability -i) bounded by some K_i. So this process terminates!

- Instances of a occurring at least once are given by the total number of extensions of b
 to some A_i.
- Instances of a occuring at least *twice* are given by counting extensions of b̄ to graphs C which can be written as a union as A_i ∪ A_j over ab̄, counting once for every such union. And so on.
- By rigidity, there is some K such that no ab̄ extends to a copy of C where C can be written as a union of ≥ K instances of A_i's since the number of copies of ab̄ to any one A_i is (with probability -¿) bounded by some K_i. So this process terminates!
- We are left with

$$\{a: \bigwedge_{i} \exists \bar{z} \Delta_{B_{i}}(a, \bar{b}, \bar{z})\}| = \sum_{k=1}^{K} (-1)^{k} \sum_{C \in Gph_{i}} N(k, C) \cdot |\Delta_{C}(G^{I_{C}}, \bar{b})|,$$

where N(k, C) counts the number of unordered sets of embeddings $\{\iota_1, \ldots, \iota_k\}$ of graphs in $\{A_1, \ldots, A_l\}$ into C such that C is the union of their images.

To find the cardinality of
 {a: ∧_i∃z̄∆_{B_i}(a, b̄, z̄) ∧ ∧_j¬∃z̄∆_{D_j}(a, b̄, z̄)}, we appeal to
 inclusion-exclusion again, as

$$|A \cap \bigcap_{j=1}^{I} (A \setminus B_j)| = |A| - \sum_{k} \sum_{i_1 < \ldots < i_k \leq I} |A \cap \bigcap_j B_{i_j}|.$$

3

イロト イヨト イヨト イヨト

To find the cardinality of
 {a: ∧_i∃z̄∆_{B_i}(a, b̄, z̄) ∧ ∧_j ¬∃z̄∆_{D_j}(a, b̄, z̄)}, we appeal to
 inclusion-exclusion again, as

$$|A \cap \bigcap_{j=1}^{I} (A \setminus B_j)| = |A| - \sum_{k} \sum_{i_1 < \ldots < i_k \leq I} |A \cap \bigcap_j B_{i_j}|.$$

• This expression is a \mathbb{Z} -linear combination of numbers asymptotically of the form $n^{a-b\alpha}$. The two flawed arguments from the quantifier-free case apply again, and the fix is similar though more complicated.

To find the cardinality of
 {a: ∧_i∃z̄∆_{B_i}(a, b̄, z̄) ∧ ∧_j ¬∃z̄∆_{D_j}(a, b̄, z̄)}, we appeal to
 inclusion-exclusion again, as

$$|A \cap \bigcap_{j=1}^{l} (A \setminus B_j)| = |A| - \sum_{k} \sum_{i_1 < \ldots < i_k \leq l} |A \cap \bigcap_j B_{i_j}|.$$

- This expression is a \mathbb{Z} -linear combination of numbers asymptotically of the form $n^{a-b\alpha}$. The two flawed arguments from the quantifier-free case apply again, and the fix is similar though more complicated.
- Briefly: we only care about counting graph extensions of \bar{b} to finitely many graphs C. Consider the rigid parts R_C of each such extension. We can definably specify, for \bar{b} , the number of copies to each R_C , and the ways in which these copies intersect.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

To find the cardinality of
 {a: ∧_i∃z̄∆_{B_i}(a, b̄, z̄) ∧ ∧_j¬∃z̄∆_{D_j}(a, b̄, z̄)}, we appeal to
 inclusion-exclusion again, as

$$|A \cap \bigcap_{j=1}^{l} (A \setminus B_j)| = |A| - \sum_{k} \sum_{i_1 < \ldots < i_k \leq l} |A \cap \bigcap_j B_{i_j}|.$$

- This expression is a \mathbb{Z} -linear combination of numbers asymptotically of the form $n^{a-b\alpha}$. The two flawed arguments from the quantifier-free case apply again, and the fix is similar though more complicated.
- Briefly: we only care about counting graph extensions of \overline{b} to finitely many graphs C. Consider the rigid parts R_C of each such extension. We can definably specify, for \overline{b} , the number of copies to each R_C , and the ways in which these copies intersect.
- For every possible such specification, we show, as in the quantifier-free case, that when leading terms in the associated "polynomial" (∑ kn^γ for γ ∈ ℝ) cancel, they cancel in their entirety, and the resulting combination is still asymptotically equal to such a polynomial.

Alex Van Abel (Wesleyan University)

Probabilistic R-Macs

References

- S. Shelah & J. Spencer "Zero-One Laws for Sparse Random Graphs" Journal of the American Mathematical Society, Vol. 1, No. 1 (1988)
- Laskowski, M. "A simpler axiomatization of the Shelah-Spencer almost sure theories: *Israel Journal of Mathematics*, Vol. 161 (2007)
- Kleitman, D.J. & Rothschild, B.L. "Asymptotic Enumeration of Partial Orders on a Finite Set" *Transactions of the American Mathematical Society*, Vol. 205 (1975)
- Kim, J.H. & Vu, V. H. "Concentration of Multivariate Polynomials and Its Applications" *Combinatorica*, Vol. 20 (2000)