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PAC Learning Model

▶ PAC stands for Probably Approximately Correct

▶ It is a Machine learning model.

▶ It was introduced by Leslie Valiant in 1984.
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Why this is important

▶ PAC and PACi reducibilities give partial ordering and a degree
structure.

▶ Helps to understand the structure of PAC learnability.

▶ If it is a linear ordering, then it has only one way of non-learnability.

▶ If incomparable degrees exist then there are at least two different
ways of non-learnability.

▶ If there exists an embedding from known degrees to PACi or PAC
degrees, then all the properties true for the known degree will be
true for PACi or PAC degrees.

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 3 / 44



PAC Learning Model (Valiant 1984) Cont.

Definition
1. Let X be a set, called the instance space.

2. Let C be a subset of P(X ) the power set of X, called a concept class.

3. The elements of C are called concepts.
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PAC Learning Model (Valiant 1984)

Definition
We say that C is PAC Learnable if and only if there is an algorithm L
such that for every c ∈ C , every ϵ, δ ∈ (0, 12 ) and every probability
distribution D on X , the algorithm L behaves as follows:

On input (ϵ, δ), the algorithm L will ask for some number n of examples,
and will be given {(x1, i1), ..., (xn, in)} where xk are independently
randomly drawn from D and ik = χc(xk).

The algorithm will then output some h ∈ C with probability at least 1− δ
in D, the symmetric difference of h and c has the probability at most ϵ in
D.
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PAC Learning Model Examples

Suppose X is the real line. Let C be the set of positive half lines then C
is PAC learnable.

The set X is called the instance space, the set C is called the concept
class and elements of C are called the concepts.

Given the inputs ϵ, δ ∈ (0, 12 )

find m, large enough such that (1− ϵ)m < δ is satisfied.

Ask for m examples. Denoted as A = {(x1, i1), ..., (xm, im)} where xk are
independently randomly drawn from D and ik = χc(xk).

Define B = {xk |(xk , ik) ∈ A and ik = 1}. Define h = inf B.

Return the hypothesis H = (h,∞).

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 6 / 44



PAC Learning Model Examples

Suppose X is the real line. Let C be the set of positive half lines then C
is PAC learnable.

The set X is called the instance space, the set C is called the concept
class and elements of C are called the concepts.

Given the inputs ϵ, δ ∈ (0, 12 )

find m, large enough such that (1− ϵ)m < δ is satisfied.

Ask for m examples. Denoted as A = {(x1, i1), ..., (xm, im)} where xk are
independently randomly drawn from D and ik = χc(xk).

Define B = {xk |(xk , ik) ∈ A and ik = 1}. Define h = inf B.

Return the hypothesis H = (h,∞).

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 6 / 44



PAC Learning Model Examples

Suppose X is the real line. Let C be the set of positive half lines then C
is PAC learnable.

The set X is called the instance space, the set C is called the concept
class and elements of C are called the concepts.

Given the inputs ϵ, δ ∈ (0, 12 )

find m, large enough such that (1− ϵ)m < δ is satisfied.

Ask for m examples. Denoted as A = {(x1, i1), ..., (xm, im)} where xk are
independently randomly drawn from D and ik = χc(xk).

Define B = {xk |(xk , ik) ∈ A and ik = 1}. Define h = inf B.

Return the hypothesis H = (h,∞).

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 6 / 44



PAC Learning Model Examples

Suppose X is the real line. Let C be the set of positive half lines then C
is PAC learnable.

The set X is called the instance space, the set C is called the concept
class and elements of C are called the concepts.

Given the inputs ϵ, δ ∈ (0, 12 )

find m, large enough such that (1− ϵ)m < δ is satisfied.

Ask for m examples. Denoted as A = {(x1, i1), ..., (xm, im)} where xk are
independently randomly drawn from D and ik = χc(xk).

Define B = {xk |(xk , ik) ∈ A and ik = 1}. Define h = inf B.

Return the hypothesis H = (h,∞).

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 6 / 44



PAC Learning Model Examples

Suppose X is the real line. Let C be the set of positive half lines then C
is PAC learnable.

The set X is called the instance space, the set C is called the concept
class and elements of C are called the concepts.

Given the inputs ϵ, δ ∈ (0, 12 )

find m, large enough such that (1− ϵ)m < δ is satisfied.

Ask for m examples. Denoted as A = {(x1, i1), ..., (xm, im)} where xk are
independently randomly drawn from D and ik = χc(xk).

Define B = {xk |(xk , ik) ∈ A and ik = 1}. Define h = inf B.

Return the hypothesis H = (h,∞).

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 6 / 44



PAC Learning Model Examples

Suppose X is the real line. Let C be the set of positive half lines then C
is PAC learnable.

The set X is called the instance space, the set C is called the concept
class and elements of C are called the concepts.

Given the inputs ϵ, δ ∈ (0, 12 )

find m, large enough such that (1− ϵ)m < δ is satisfied.

Ask for m examples. Denoted as A = {(x1, i1), ..., (xm, im)} where xk are
independently randomly drawn from D and ik = χc(xk).

Define B = {xk |(xk , ik) ∈ A and ik = 1}. Define h = inf B.

Return the hypothesis H = (h,∞).

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 6 / 44



PAC Learning Model Examples

Suppose X is the real line. Let C be the set of positive half lines then C
is PAC learnable.

The set X is called the instance space, the set C is called the concept
class and elements of C are called the concepts.

Given the inputs ϵ, δ ∈ (0, 12 )

find m, large enough such that (1− ϵ)m < δ is satisfied.

Ask for m examples. Denoted as A = {(x1, i1), ..., (xm, im)} where xk are
independently randomly drawn from D and ik = χc(xk).

Define B = {xk |(xk , ik) ∈ A and ik = 1}. Define h = inf B.

Return the hypothesis H = (h,∞).

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 6 / 44



PAC Learning Model Examples

Why does above mentioned algorithm works?

Suppose the target is (t,∞).

Notice that t ≤ h. Otherwise, our training data is wrong.

Figure 1: Training data error
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PAC Learning Model Examples

Why does above mentioned algorithm works?

Suppose the target is (t,∞).

Notice that t ≤ h. Otherwise, our training data is wrong.

Then (t,∞)△(h,∞) = (t, h).

Define b such that D(t, b) < ϵ.

We can show that probability of h < b is less than δ.

This probability is bounded by (1− ϵ)m and (1− ϵ)m < δ.

Since one example missing (t, b) has the probability (1− ϵ).

Then m examples missing (t, b) has the probability (1− ϵ)m.
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More Examples

Example

Suppose X is the real line.
▶ Let C be the set of positive half lines then C is PAC learnable.
▶ Let C be the set of negative half lines then C is PAC learnable.
▶ Let C be the set of intervals then C is PAC learnable.

Suppose X is R2.
▶ Let C be the set of axis aligned rectangles then C is PAC learnable.
▶ Let C be the set of convex d-gons then C is PAC learnable for any d.

Suppose X = Rd .
▶ Let C be the set of linear-half spaces. Then C is PAC learnable.
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Weakly effective concept class

Definition
A weakly effective concept class is a computable enumeration
φe : N → N such that φe(n) is a Π0

1 index for a Π0
1 tree Te,n.
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An effective concept class

Definition
An effective concept class is a weakly effective concept class φe(n) such
that for each n, the set cn of paths through Te,n is computable in the
sense that there is a computable function fcn(σ, r) : 2

<ω ×Q → {0, 1}
such that

fcn(σ, r) =


1 if Br (σ) ∩ cn ̸= ∅
0 if B2r (σ) ∩ cn = ∅
0 or 1 otherwise

where Br (σ) is the set of all paths that either extend σ or first differ from
it at the −⌈lg(r)⌉ place or later.
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Figure

Figure 2: Computable function fcn (σ, r)
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An effective concept class

Definition
An effective concept class is a weakly effective concept class φe(n) such
that for each n, the set cn of paths through Te,n is computable in the
sense that there is a computable function fcn(σ, r) : 2

<ω ×Q → {0, 1}
such that

fcn(σ, r) =


1 if Br (σ) ∩ cn ̸= ∅
0 if B2r (σ) ∩ cn = ∅
0 or 1 otherwise

where Br (σ) is the set of all paths that either extend σ or first differ from
it at the −⌈lg(r)⌉ place or later.

We can say that an effective concept class is a set of Π0
1 classes. A Π0

1

class is expressed as the set of infinite paths through a computable tree
or the set of infinite paths through a Π0

1 tree.
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Example

Example

The class C of linear half-spaces in Rd bounded by hyper-planes with
computable coefficients is an effective concept class.

Since the distance of a point from the boundary can be computed, the
linear half-spaces with computable coefficients is a computable set.

Consider R2. There are algorithms to compute the distance from a point
to a line. The line has computable coefficients. Here no need to use the
full precision reals.
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PACi Reducibility (Calvert 2018)

Definition
Let C be an effective concept class over the instance space X and D an
effective concept class over the instance space Y .

We say that C PACi reduces to D, which we denote by C ≤PACi D
exactly when there are functions g : X → Y and h : C → D such that

1. g is a Turing functional
2. h is a computable function on indices
3. for all x ∈ X and for all c ∈ C , we have x ∈ c if and only if

g(x) ∈ h(c).

The “i” indicates the independence of this definition from size and
computation time.
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PAC Reducibility (Kearns, Vazirani 1994)

Definition
Let C be an effective concept class over the instance space X and D an
effective concept class over the instance space Y .

We say that C PAC reduces to D, denoted C ≤PAC D exactly when there
are functions g : X → Y and h : C → D such that

1. g is a Turing functional and computable in polynomial time,
2. for all x ∈ X and for all c ∈ C , we have x ∈ c if and only if

g(x) ∈ h(c)
3. There is a polynomial p such that for any x ∈ X of size n, the

element g(x) is of size at most p(n), and
4. There is a polynomial q such that for every c ∈ C of size n, the

concept h(c) is of size at most q(n).
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Learnability and Reducibility

Theorem
Let C and D be concept classes. Then if C PAC-reduces to D, and D is
PAC learnable, C is PAC learnable.

Proof:
Let L′ be the learning algorithm for D.
We use L′ to learn C .
For a random example (x , c) of the unknown target concept c ∈ C , we
can compute the labeled example (g(x), h(c)) and give it to L′.
If the instance x ∈ X are drawn according to D, then the instances
g(x) ∈ Y are drawn according to some induced distribution D′.
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If the instance x ∈ X are drawn according to D, then the instances
g(x) ∈ Y are drawn according to some induced distribution D′.
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Proof cont.

Although we do not know the target concept c , our definition of
reduction guarantees that the computed examples (g(x), h(c)) are
consistent with some d ∈ D, and thus L′ will output a hypothesis t ′ that
has an error at most ϵ with respect to D′.

Our hypothesis for c becomes t(x) = t ′(g(x)), which has at most ϵ error
with respect to D.
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Kolmogorov Complexity

As the size of the effective concept class, we can use the Kolmogorov
complexity.

The quantification of the amount of absolute information in individual
objects that are invariant up to an additive constant is known as the
Kolmogorov Complexity.
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Example

Let X = 2ω be the instance spaces.

Let {cn}∞n=1 be a family of trees, where cn has n number of 1’s and
followed by zeros.

In this sequence, each of these trees cn consists of a single infinite path.
Let C be the concept class consisting of the above sequence of trees.
Since cn has only a single infinite path, identify each tree cn by this single
path.

We calculate the Kolmogorov Complexity of the initial segment of the
path of the tree cn.

Thus size of cn is given by size(cn) = K ((cn)1:n|n) ≤ k where k is a
constant. This is possible since the finite segment of the tree is
computable.
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▶ Observe that the empty concept class on the empty instance space is
reducible to any other concept class.
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PAC Reducibility (Kearns, Vazirani 1994)

Definition
Let C be an effective concept class over the instance space X and D an
effective concept class over the instance space Y .

We say that C PAC reduces to D, denoted C ≤PAC D exactly when there
are functions g : X → Y and h : C → D such that
1. g is a Turing functional and computable in polynomial time,
2. for all x ∈ X and for all c ∈ C , we have x ∈ c if and only if

g(x) ∈ h(c)
3. There is a polynomial p such that for any x ∈ X of size n, the

element g(x) is of size at most p(n), and
4. There is a polynomial q such that for every c ∈ C of size n, the

concept h(c) is of size at most q(n).
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▶ Observe that the empty concept class on the empty instance space is
reducible to any other concept class.

▶ Also any concept class is reducible to itself through the identity
function.

▶ We can infer that there are ≤PAC incomparable concept classes since
there are continuum many concept classes on a countably infinite
instance space.

▶ This degree structure is analogous to Turing degrees and their
structures. So, we can expect the effective concept classes to behave
in a similar manner to computably enumerable degrees.
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PACi Degree and PAC Degree

Definition
We say C ∼PACi D if C ≤PACi D and D ≤PACi C , the relation ∼ is an
equivalence relation. The PACi degree of concept class C is
deg(C ) = {D : D ∼PACi C}

Definition
We say C ∼PAC D if C ≤PAC D and D ≤PAC C , the relation ∼ is an
equivalence relation. The PAC degree of concept class C is
deg(C ) = {D : D ∼PAC C}
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Examples

Example

Let X = X ′ = R be the two instance spaces.
Let C be the set of positive half lines and C ′ be the set of negative half
lines.

The positive half lines are bounded below. If positive half lines are
bounded below by a computable lower bound then the concept class C is
an effective concept class.

Similarly we can show that C ′ is also an effective concept class.

Define g : R → R by g(x) = −x and h : C → C ′ by
h((a,∞)) = (−∞,−a).

Now we can show that for all x ∈ R and for all positive half lines
c = (a,∞) in C we have x ∈ c iff g(x) ∈ h(c) where h(c) is a negative
half line.

This will give us C ≤PACi C
′. With appropriate functionals, we can show

that C ′ ≤PACi C . Thus C ∼ C ′.
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PACi Incomparable Degrees

Theorem

There exist effective concept classes C and D over the instance space
X = Y = 2ω such that C does not PACi reduce to D and also D does
not PACi reduce to C . (i.e. C ≰PACi D and D ≰PACi C ).
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Sketch of Proof:

The two concept classes C and D are constructed over the instance
spaces X and Y respectively. Let {ht |t ∈ N} enumerate the set of all
partial computable functions from N → N.

Requirements : R2t : there exists c ∈ C such that ht(c) /∈ D

R2t+1 : there exists d ∈ D such that ht(d) /∈ C
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Satisfying one requirement

Consider R2t .

To satisfy the requirement R2t we will attach a potential witness c : a
concept, to R2t which is not yet enumerated in C.

We choose c such that c is an index for a tree.

Let {cn}∞n=1 be a family of trees, where cn has n number of 1’s and
followed by zeros. In this sequence each of these trees cn, consists of a
single infinite path.
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Satisfying one requirement cont.

We will use Bs to keep track of the set of all trees that we plan not to
enumerate in C .

We will use As to keep track of the set of all trees that we plan not to
enumerate in D.

At stage s pick a c such that c /∈ Bs and c /∈ Cs and ht(c) /∈ Ds .

We will enumerate c in Cs and enumerate ht(c) in As .

Thus we restrain the tree ht(c) from later entering to D by checking the
condition, d /∈ As+1, and selecting the next indexed concept from the
sequence.
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Satisfying one requirement cont.

We have C ≰PACi D.

The strategy for R2t+1 is the same but with roles of Cs and Ds

reversed.

We call the sets A and B restraint sets.
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Construction of the two concept classes, C and D.

Let X = Y = 2ω.

Let {cn}∞n=1 be a family of trees, where cn has n number of 1’s and
followed by zeros. In this sequence each of these trees cn, consists of a
single infinite path.

Stage s = 0: Let C0 = D0 = ϕ and A0 = B0 = ϕ.

Stage s + 1 :

Requirement R2t requires attention, if we have not enumerated a witness,
c ∈ C for the requirement R2t .

Requirement R2t+1 requires attention, if we have not enumerated a
witness, d ∈ D for the requirement R2t+1.
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Construction of the two concept classes, C and D.

Choose least i ≤ s such that Ri requires attention.

Suppose i = 2t. Now R2t receives attention.

Pick a tree c from the family {cn} defined above with c = cn for some
n < s such that c /∈ Cs and c /∈ Bs and ht(c) /∈ Ds .

If such a c exists enumerate c ∈ Cs+1 and ht(c) in As+1. If such a c does
not exist then do nothing.

Suppose i = 2t + 1. Now R2t+1 receives attention.

Pick a tree d from the family {cn} with d = cn for some n < s such that
d /∈ Ds and d /∈ As and ht(d) /∈ Cs .

If d exists then enumerate d ∈ Ds+1 and ht(d) in Bs+1. Do nothing if
such a d does not exist.
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Construction of the two concept classes, C and D.

At each stage, we will be checking through a finite amount of trees in Cs ,
Ds , As , or Bs .

When a requirement is satisfied at stage s it will remain satisfied forever.
Thus we have C ≰PACi D and D ≰PACi C

Gihanee Senadheera Incomparable Degrees in PACi and PAC Learning October 14, 2023 33 / 44



PAC Incomparable Degrees

Theorem

There exist effective concept classes C and D over the instance space
X = Y = 2ω such that C does not PAC reduce to D and also D does
not PAC reduce to C . (i.e. C ≰PAC D and D ≰PAC C ).
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Sketch of the proof:

Requirements :

R2t : there exists σ ∈ c where c ∈ C s.t. gt(σ) /∈ d ,∀ d ∈ D

R2t+1 : there exists τ ∈ d where d ∈ D s.t. gt(τ) /∈ c ,∀ c ∈ C
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A Greatest Effective Concept Class

We can define a jump for the effective concept classes also.

We can show that deg(A⊕ B) is the least upper bound for the deg(A)
and deg(B) in (P, <) where P is the class of all PAC degrees. The degree
P forms a partially ordered set under relation deg(A) ≤ deg(B).

We can show that
⊕

i∈ω Ci is an effective concept class.

(⊕i∈ωCi )e = {1i0σ |σ ∈ (Ci )e , i , e ∈ ω}
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e-th tree

Figure 3: The e-th tree of the concept class
⊕
i∈ω

Ci
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A Greatest Effective Concept Class

Theorem⊕
i∈ω

Ci is an effective concept class.

Proof:
Since each effective concept class, Ci is computable, there exist a
computable f icn(σ, r) for each i . Then define
fcn(σ, r) : 2

<ω ×Q → {0, 1}

fcn(σ, r) =

{
1 if σ = 1|σ|

f icn(τ, r
′) if σ = 1i0τ
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A Greatest Effective Concept Class

Theorem

deg

(⊕
j∈ω

Aj

)
is the least upper bound for {deg(Ay )|y ∈ ω}.

Proof:

gy : 2ω → 2ω and hy : Ay →
⊕
j∈ω

Aj by

σ 7→ 1y0σ and (Ay )e 7→

⊕
j∈ω

Aj


e

(1)

Hence Ay ≤PACi

⊕
j∈ω

Aj for all y . Therefore

deg(Ay ) ≤ deg

⊕
j∈ω

Aj

 for all y (2)
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Embedding 1-degrees to PACi degrees

Let P be the PACi degrees of effective concept class. Let C be the
1-degree of c.e. sets.

Is there ϕ : C → P such that a ≤1 b iff ϕ(a) ≤PACi ϕ(b)?

Sketch of the proof:

There are c.e. sets We1 ∈ a and We2 ∈ b.

We1 7→ {cn|n ∈ We1} = Cϕ(e1) where cn = 1n0̄.

We2 7→ {cn|n ∈ We2} = Cϕ(e2).
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Continuing sketch of the proof:

Since We1 ≤1 We2 there is a 1-1 function ψ.

ψ : We1 −−−−→ We2

n −−−−→ ψ(n)

ϕ

y yϕ
cn −−−−→ cψ(n)

(3)

g : X = 2ω → Y = 2ω and h : Cϕ(e1) → Cϕ(e2)

σ 7→

{
τ if σ = cn where τ = cψ(n)
σ otherwise

cn 7→ cψ(n) (4)
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Lemma
If We1 ≰1 We2 then Cϕ(e1) ≰PACi Cϕ(e2).

Sketch of the proof:

we will use the contrapositive of this statement. That is, if
Cϕ(e1) ≤PACi Cϕ(e2) then We1 ≤1 We2 .

Since Ce1 ≤PACi Ce2 there exist g and h but we will consider only
h.

h : Ce1 −−−−→ Ce2

cn −−−−→ h(cn)

ϕ′
y yϕ′

n −−−−→ h(n)

(5)
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Sketch of the proof continues

To obtain the 1-reduction between Wϕ′(e1) and Wϕ′(e2) define ψ as
follows. Each n ∈ Wϕ′(e1) will be mapped to h(n) as in Equation
6.

ψ : Wϕ′(e1) → Wϕ′(e2)

n 7−→ h(n)
(6)
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Thank you!
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